Skip to main content

Using sparsification for parametric minimum spanning tree problems

  • Conference paper
  • First Online:
Algorithm Theory — SWAT'96 (SWAT 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1097))

Included in the following conference series:

Abstract

Two applications of sparsification to parametric computing are given. The first is a fast algorithm for enumerating all distinct minimum spanning trees in a graph whose edge weights vary linearly with a parameter. The second is an asymptotically optimal algorithm for the minimum ratio spanning tree problem, as well as other search problems, on dense graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.K. Agarwal. Intersection and Decomposition Algorithms for Planar Arrangements. Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  2. B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Diameter, width, closest line pair, and parametric searching. In Proceedings of the 8th Annual ACM Symposium on Computational Geometry, pp. 120–129 (1992).

    Google Scholar 

  3. P.M. Camerini, F. Maffioli, and C. Vercellis. Multi-constrained matroidal knapsack problems. Mathematical Programming 45:211–231, 1989.

    Article  Google Scholar 

  4. E. Cohen and N. Megiddo. Maximizing concave functions in fixed dimension. In Complexity in Numerical Computations, P.M. Pardalos, ed., pp. 74–87, World Scientific Press 1993.

    Google Scholar 

  5. R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. Assoc. Comput. Mach., 34(1):200–208, 1987.

    Google Scholar 

  6. R. Chandrasekaran. Minimal ratio spanning trees. Networks, 7:335–342, 1977.

    Google Scholar 

  7. B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the plane. J. Assoc. Comput. Mach., 39:1–54, 1992.

    Google Scholar 

  8. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, Massachusetts, 1990.

    Google Scholar 

  9. M.J. Eisner and D.G. Severance. Mathematical techniques for efficient record segmentation in large shared databases. J. Assoc. Comput. Mach., 23:619–635, 1976.

    Google Scholar 

  10. D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification — a technique for speeding up dynamic graph algorithms. In Proc. 33rd Annual Symposium on Foundations of Computer Science, pp. 60–69, 1992.

    Google Scholar 

  11. D. Eppstein, Z. Galil, and G.F. Italiano. Improved sparsification. Tech Report 93-20, Department of Computer Science, University of Califonia, Irvine, April, 1993.

    Google Scholar 

  12. D. Eppstein and D. S. Hirschberg. Choosing subsets with maximum weighted average. Tech. Rep. 95-12, Dept. Inf. and Comp. Sci., UC Irvine, 1995.

    Google Scholar 

  13. D. Eppstein. Geometric lower bounds for parametric matroid optimization. In 27th Annual Symp. on Theory of Computing, pp. 662–671, 1995.

    Google Scholar 

  14. D. Fernández-Baca and G. Slutzki. Optimal parametric search on graphs of bounded tree-width. In Proc. 4th Scandinavian Workshop on Algorithm Theory, pp. 155–166, LNCS 824, Springer-Verlag, 1994. To appear in J. Algorithms.

    Google Scholar 

  15. D. Fernández-Baca and G. Slutzki. Linear-time algorithms for parametric minimum spanning tree problems on planar graphs. In Proc. Latin American Conference on Theoretical Informatics, pp. 257–271, LNCS 911, Springer-Verlag, 1995.

    Google Scholar 

  16. G.N. Frederickson. Data structures for on-line updating of minimum spanning trees. SIAM J. Comput. 14:781–798, 1985.

    Article  Google Scholar 

  17. G.N. Frederickson. Optimal algorithms for partitioning trees and locating p-centers in trees. Technical Report CSD-TR 1029, Department of Computer Science, Purdue University, October 1990.

    Google Scholar 

  18. G.N. Frederickson. Ambivalent data structures for dynamic 2-edge connectivity and k-smallest spanning trees. In Proc. 32nd Annual Symp. on Foundations of Computer Science, pp. 632–641, 1991.

    Google Scholar 

  19. M. Fredman and D. Willard. Trans-dichotomous algorithms for minimum spanning trees and shortest paths. In Proc. 31st Annual IEEE Symp. on Foundations of Computer Science, 1990, pp. 719–725.

    Google Scholar 

  20. H.N. Gabow, Z. Galil, T. Spencer, and R.E. Tarjan. Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica, 6:109–122, 1986.

    Google Scholar 

  21. D. Gusfield. Sensitivity analysis for combinatorial optimization. Technical Report UCB/ERL M80/22, University of California, Berkeley, May 1980.

    Google Scholar 

  22. D. Gusfield. Parametric combinatorial computing and a problem in program module allocation. J. Assoc. Comput. Mach., 30(3):551–563, 1983.

    Google Scholar 

  23. R. Hassin and A. Tamir. Maximizing classes of two-parametric objectives over matroids. Math. Oper. Res., 14:362–375, 1989.

    Google Scholar 

  24. H. Ishii, S. Shiode, and T. Nishida. Stochastic spanning tree problem. Discrete Applied Mathematics, 3:263–273, 1981.

    Google Scholar 

  25. N. Katoh and T. Ibaraki. On the total number of pivots required for certain parametric combinatorial optimization problems. Technical Report Working Paper 71, Inst. Econ. Res., Kobe Univ. Commerce, 1983.

    Google Scholar 

  26. D.R. Karger, P.N. Klein, and R.E. Tarjan. A randomized linear-time algorithm for finding minimum spanning trees. J. Assoc. Comput. Mach., 42:321–329, 1995.

    Google Scholar 

  27. J. Matoušek and O. Schwartzkopf. A deterministic algorithm for the three-dimensional diameter problem. In Proceedings of 25th Annual Symposium on Theory of Computing, pp. 478–484 (1993).

    Google Scholar 

  28. N. Megiddo. Combinatorial optimization with rational objective functions. Math. Oper. Res., 4:414–424, 1979.

    Google Scholar 

  29. N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. Assoc. Comput. Mach., 30(4):852–865, 1983.

    MathSciNet  Google Scholar 

  30. M. Sharir and S. Toledo. Extremal polygon containment problems. Computational Geometry, 4:99–118, 1994.

    Google Scholar 

  31. D.D.K. Sleator and R.E. Tarjan. A data structure for dynamic trees. Journal of Computer and System Sciences, 26(3):362–391, 1983.

    Article  Google Scholar 

  32. S. Toledo. Maximizing non-linear convex functions in fixed dimension. In Complexity in Numerical Computations, P.M. Pardalos, ed., pp. 74–87, World Scientific Press 1993. A preliminary version appeared in FOCS 92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rolf Karlsson Andrzej Lingas

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández-Baca, D., Slutzki, G., Eppstein, D. (1996). Using sparsification for parametric minimum spanning tree problems. In: Karlsson, R., Lingas, A. (eds) Algorithm Theory — SWAT'96. SWAT 1996. Lecture Notes in Computer Science, vol 1097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61422-2_128

Download citation

  • DOI: https://doi.org/10.1007/3-540-61422-2_128

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61422-7

  • Online ISBN: 978-3-540-68529-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics