Skip to main content

Regulation of glucose transport into skeletal muscle

  • Chapter
  • First Online:
Reviews of Physiology Biochemistry and Pharmacology, Volume 128

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 128))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almers W (1990) Exocytosis. Annu Rev Physiol 52:607–624

    Google Scholar 

  • Amatruda JM, Livingston JN, Lockwood DH (1985) Cellular mechanisms in selected states of insulin resistance: human obesity, glucocorticoid excess, and chronic renal failure. Diabetes Metab Rev 1:293–317

    Google Scholar 

  • Andersen PH, Lund S, Vestergaard H, Junker S, Kahn B, Pedersen O (1993) Expression of the major insulin regulatable glucose transporter (GLUT4) in skeletal muscle on non insulin dependent diabetic patients and healthy subjects before and after insulin infusion. J Clin Endocrinol Metab 77:27–32

    Google Scholar 

  • Ariano MA, Armstrong RB, Edgerton VR (1973) Hindlimb muscle fiber populations of five animals. J Histochem Cytochem 21:51–55

    Google Scholar 

  • Arner P, Pollare T, Lithell H, Livingston JN (1987) Defective insulin receptor tyrosine kinase in human skeletal muscle in obesity and Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 30:437–440

    Google Scholar 

  • Azevedo JR, Carey JO, Pories WJ, Morris PG, Dohm GL (1995) Hypoxia stimulates glucose transport in insulin-resistant human skeletal muscle. Diabetes 44:695–698

    Google Scholar 

  • Baldini G, Hohman R, Charron MJ, Lodish HF (1991) Insulin and nonhydrolyzable GTP analogs induce translocation of GLUT4 to the plasma membrane in α-toxinpermeabilized rat adipose cells. J Biol Chem 266:4037–4040

    Google Scholar 

  • Baldwin SA, Baldwin JM, Gorga FR, Lienhard GE (1979) Purification of the cytochalasin B binding component of the human erythrocyte monosaccharide transport system. Biochim Biophys Acta 552:183–188

    Google Scholar 

  • Banks EA, Brozinick JT Jr, Yaspelkis BB III, Kang HY, Ivy JL (1992) Muscle glucose transport, GLUT-4 content, and degree of exercise training in obese Zucker rats. Am J Physiol 263:E1010–E1015

    Google Scholar 

  • Barnard RJ, Youngren JF (1992) Regulation of glucose transport in skeletal muscle. FASEB J 6:3238–3244

    Google Scholar 

  • Baron AD, Steinberg H, Brechtel G, Johnson A (1994) Skeletal muscle blood flow independently modulates insulin-mediated glucose uptake. Am J Physiol 266:E248–E253

    Google Scholar 

  • Bashan N, Burdett E, Guma A, Sargeant R, Tumiati L, Liu Z, Klip A (1993) Mechanisms of adaptation of glucose transporters to changes in the oxidative chain of muscle and fat cells. Am J Physiol 264:C430–C440

    Google Scholar 

  • Bell GI, Burant CF, Takeda J, Gould GW (1993) Structure and function of mammalian facilitative sugar transporters. J Biol Chem 268:19161–19164

    Google Scholar 

  • Bergström J, Hultman E (1966) Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature 210:309–310

    Google Scholar 

  • Bergström J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol Scand 71:140–150

    Google Scholar 

  • Bergström J, Hultman E, Roch-Norlund AE (1972) Muscle glycogen synthetase in normal subjects. Scand J Clin Lab Invest 29:231–236

    Google Scholar 

  • Bihler I, Charles P, Sawh PC (1980) Effects of the calcium ionophore A-23187 on the regulation of sugar transport in muscle. Cell Calcium 1:327–336

    Google Scholar 

  • Birnbaum MJ (1989) Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell 57:305–315

    Google Scholar 

  • Block NE, Buse MG (1989) Effects of hypercortisolemia and diabetes on skeletal muscle insulin receptor function in vitro and in vivo. Am J Physiol 256:E39–E48

    Google Scholar 

  • Block NE, Menick DR, Robinson KA, Buse MG (1991) Effect of denervation on the expression of two glucose transporter isoforms in rat hindlimb muscle. J Clin Invest 88:1546–1552

    Google Scholar 

  • Bonen A, Tan MH, Watson-Wright WM (1984) Effects of exercise on insulin-binding and glucose metabolism in muscle. Can J Physiol Pharmacol 62:1500–1504

    Google Scholar 

  • Bonen A, Tan MH, Clune P, Kirby RL (1985) Effects of exercise on insulin-binding to human muscle. Am J Physiol 248:E403–E408

    Google Scholar 

  • Bonen A, Clark MG, Henriksen EJ (1994) Experimental approaches in muscle metabolism: hindlimb perfusion and isolated muscle incubations. Am J Physiol 266:E1–E16

    Google Scholar 

  • Bornemann A, Ploug T, Schmalbruch H (1992) Subcellular localization of GLUT4 in nonstimulated and insulin-stimulated soleus muscle of rat. Diabetes 41:215–221

    Google Scholar 

  • Bourey RE, Koranyi L, James DE, Mueckler M, Permutt MA (1990) Effects of altered glucose homeostasis on glucose transporter expression in skeletal muscle of the rat. J Clin Invest 86:542–547

    Google Scholar 

  • Brozinick JT Jr, Etgen GJ Jr, Yaspelkis BB III, Ivy JL (1992) Contraction-activated glucose uptake is normal in insulin-resistant muscle of the obese Zucker rat. J Appl Physiol 73:382–387

    Google Scholar 

  • Brozinick JT Jr, Etgen GJ Jr, Yaspelkis BB III, Kang HY, Ivy JL (1993) Effects of exercise training on muscle GLUT-4 protein content and translocation in obese Zucker rats. Am J Physiol 265:E419–E427

    Google Scholar 

  • Brozinick JT Jr, Etgen GJ Jr, Yaspelkis BB III, Ivy JL (1994a) Glucose uptake and GLUT-4 protein distribution in skeletal muscle of the obese Zucker rat. Am J Physiol 267:R236–R243

    Google Scholar 

  • Broznick JT Jr, Etgen GJ, Yaspelkis BB III, Ivy JL (1994b) The effects of muscle contraction and insulin on glucose-transporter translocation in rat skeletal muscle. Biochem J 297:539–545

    Google Scholar 

  • Burant CF, Lemon SK, Treutelaar MK, Buse MG (1984) Insulin resistance of denervated rat muscle: a model for impaired receptor-function coupling. Am J Physiol 247:E657–E666

    Google Scholar 

  • Burant CF, Treutelaar MK, Buse MG (1986) In vitro and in vivo activation of the insulin receptor kinase in control and denervated skeletal muscle. J Biol Chem 261:8985–8993

    Google Scholar 

  • Buse MG, Buse J (1959) Glucose uptake and response to insulin of the isolated rat diaphragm: the effect of denervation. Diabetes 8:218–225

    Google Scholar 

  • Cain CC, Trimble WS, Lienhard GE (1992) Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter-containing vesicles from rat adipocytes. J Biol Chem 267:11681–11684

    Google Scholar 

  • Calderhead DM, Kitagawa K, Lienhard GE, Gould GW (1990) Translocation of the brain-type glucose transporter largely accounts for insulin stimulation of glucose transport in BC3H-1 myocytes. Biochem J 269:597–601

    Google Scholar 

  • Carlsen RC, Larson Db, Walsh DA (1985) A fast-twitch oxidative glycolytic skeletal muscle with a robust inward calcium current. Can J Physiol Pharmacol 63:958–965

    Google Scholar 

  • Caro JF, Sinha MK, Raju SM, Ittoop O, Pories WJ, Flickinger EG, Meelheim D, Dohm GL (1987) Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest 79:1330–1337

    Google Scholar 

  • Carruthers A (1990) Facilitated diffusion of glucose. Physiol Rev 70:1135–1176

    Google Scholar 

  • Cartee GD, Holloszy JO (1990) Exercise increases susceptibility of muscle glucose transport to activation by various stimuli. Am J Physiol 258:E390–E393

    Google Scholar 

  • Cartee GD, Young DA, Sleeper MD, Zierath J, Wallberg-Henriksson H, Holloszy JO (1989) Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. Am J Physiol 256:E494–E499

    Google Scholar 

  • Cartee GD, Douen AG, Ramlal T, Klip A, Holloszy JO (1991) Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol 70:1593–1600

    Google Scholar 

  • Casla A, Rovira A, Wells JA, Dohm GL (1990) Increased glucose transporter (GLUT4) protein expression in hyperthyroidism. Biochem Biophys Res Commun 171:182–188

    Google Scholar 

  • Charron MJ, Brosius FC III, Alper SL, Lodish HF (1989) A glucose transport protein expressed predominantely in insulin-responsive tissues. Proc Natl Acad Sci USA 86:2535–2539

    Google Scholar 

  • Charron MJ, Kahn BB (1990) Divergent molecular mechanisms for insulin-resistant glucose transport in muscle and adipose cells vivo. J Biol Chem 265:7994–8000

    Google Scholar 

  • Cheng K, Creacy S, Larner J (1983) Insulin-like effects of lithium ion on isolated rat adipocytes. II. Specific activation of glycogen synthase. Mol Cell Biochem 56:183–189

    Google Scholar 

  • Clausen T (1968) The relationship between the transport of glucose and cations across cell membranes in isolated tissues. Biochem Biophys Acta 150:66–72

    Google Scholar 

  • Clausen T, Elbrink J, Dahl-Hansen AB (1975) The relationship between the transport of glucose and cations across cell membranes in isolated tissues. IX. The role of cellular calcium in the activation of the glucose transport system in rat soleus muscle. Biochem Biophys Acta 375:292–308

    Google Scholar 

  • Coderre L, Monfar MM, Chen KS, Heydrick SJ, Kurowski TG, Ruderman NB, Pilch PF (1992) Alteration in the expression of GLUT1 and GLUT4 protein and messenger RNA levels in denervated rat muscles. Endocrinology 131:1821–1825

    Google Scholar 

  • Coderre L, Vallega G, Pilch PF (1994) Association of GLUT4 vesicles with glycogen particles in skeletal muscle. Identification of a contraction-sensitive pool. Diabetes 43 [Suppl 1]:159a

    Google Scholar 

  • Conlee RK, Hickson RC, Winder WW, Hagberg JM, Holloszy JO (1978) Regulation of glycogen resynthesis in muscle of rats following exercise. Am J Physiol 235:R145–R150

    Google Scholar 

  • Constable SH, Young JC, Higuchi M, Holloszy JO (1984) Glycogen resynthesis in leg muscles of rats during exercise. Am J Physiol 247:R880–R883

    Google Scholar 

  • Constable SH, Favier RJ, Cartee GD, Young DA, Holloszy JO (1988) Muscle glucose transport: interactions of vitro contractions, insulin and exercise. J Appl Physiol 64:2329–2332

    Google Scholar 

  • Cormont M, Tanti J-F, Gremeaux T, Van Obberghen E, Le Marchand-Brustel Y (1991) Subcellular distribution of low molecular weight guanosine triphosphate-binding proteins in adipocytes: colocalization with the glucose transporter Glut 4. Endocrinology 129:3343–3350

    Google Scholar 

  • Cormont M, Gremeaux T, Tanti J, Van Obberghen E, Le Marchand-Brustel Y (1992) Polymyxin B inhibits insulin-induced glucose transporter and IGF-II receptor translocation in isolated adipocytes. Eur J Biochem 207:185–193

    Google Scholar 

  • Cormont M, Tanti J, Zahraoui A, Van Obberghen E, Tavitian A, Le Marchand-Brustel Y (1993) Insulin and okadaic acid induce Rab4 redistribution in adipocytes. J Biol Chem 268:19491–19497

    Google Scholar 

  • Cortez MY, Torgan CE, Brozinick JT Jr, Ivy JL (1991) Insulin resistance of obese Zucker rats exercise trained at two different intensities. Am J Physiol 261:E613–E619

    Google Scholar 

  • Crettaz M, Horton ES, Wardzala LJ, Horton ED, Jeanrenaud B (1979) Physical training of Zucker rats: lack of alleviation of muscle insulin resistance. Am J Physiol 237:E414–E420

    Google Scholar 

  • Crettaz M, Prentki M, Zaninetti D, Jeanrenaud B (1980) Insulin resistance in soleus muscle from obese Zucker rats. Involvement of several defective sites. Biochem J 186:525–534

    Google Scholar 

  • Cushman SW, Wardzala LJ (1980) Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. J Biol Chem 255:4758–4762

    Google Scholar 

  • Davidson MB, Karjala RG (1978) Primary insulin antagonism of glucose transport in muscle from the older-obese rat. Metabolism 27:1994–2005

    Google Scholar 

  • Davidson MB, Bouch C, Venkatesan N, Karjala RG (1994) Impaired glucose transport in skeletal muscle but normal GLUT4 tissue distribution in glucose-infused rats. Am J Physiol 267:E808–E813

    Google Scholar 

  • Davis TA, Karl IE (1988) Resistance of protein and glucose metabolism to insulin in denervated rat muscle. Biochem J 254:667–675

    Google Scholar 

  • De Camilli P, Jahn R (1990) Pathways to regulated exocytosis in neurons. Annu Rev Physiol 52:625–645

    Google Scholar 

  • DeFronzo RA, Soman V, Sherwin RS, Hendler R, Felig P (1978) Insulin binding to monocytes and insulin action in human obesity, starvation, and refeeding. J Clin Invest 62:204–213

    Google Scholar 

  • Dela F, Ploug T, Handberg A, Petersen LN, Larsen JJ, Mikines KJ, Galbo H (1994) Physical training increases muscle GLUT4 protein and mRNA in patients with NIDDM. Diabetes 43:862–865

    Google Scholar 

  • Dela F, Handberg A, Mikines KJ, Vinten J, Galbo H (1993) GLUT4 and insulin receptor binding and kinase activity in trained human muscle. J Physiol (Lond) 469:615–624

    Google Scholar 

  • DeMartino GN, Croall DE (1987) Calcium-dependent proteases: a prevalent proteolytic system of uncertain function. NIPS 2:82–85

    Google Scholar 

  • Dettbarn C, Palade P (1991) Effects of alkaline pH on sarcoplasmic reticulum Ca2+ release and Ca2+ uptake. J Biol Chem 266:8993–9001

    Google Scholar 

  • Dimitrakoudis D, Ramlal T, Rastogi S, Vranic M, Klip A (1992) Glycaemia regulates the glucose transporter number in the plasma membrane of rat skeletal muscle. Biochem J 284:341–348

    Google Scholar 

  • Dohm GL, Tapscott EB, Pories WJ, Dabbs DJ, Flickinger EG, Meelheim D, Fushiki T, Atkinson SM, Elton CW, Caro JF (1988) An in vitro human muscle preparation suitable for metabolic studies. J Clin Invest 82:486–494

    Google Scholar 

  • Dolan PL, Tapscott EB, Dorton PJ, Dohm GL (1993) Contractile activity restores insulin responsiveness in skeletal muscle of obese Zucker rats. Biochem J. 289:423–426

    Google Scholar 

  • Douen AG, Ramlal T, Klip A, Young DA, Cartee GD, Holloszy JO (1989) Exercise-induced increase in glucose transporters in plasma membranes of rat skeletal muscle. Endocrinology 124:449–454

    Google Scholar 

  • Douen AG, Ramlal T, Cartee GD, Klip A (1990a) Exercise modulates the insulin-induced translocation of glucose transporters in rat skeletal muscle. FEBS Lett 261:256–260

    Google Scholar 

  • Douen AG, Ramlal T, Rastogi S, Bilan PJ, Cartee GD, Vranic M, Holloszy JO, Klip A (1990b) Exercise induces recruitment of the “insulin-responsive glucose transporter.” J Biol Chem 265:13427–13430

    Google Scholar 

  • Draznin B, Sussmann K, Kao M, Lewis D, Sherman N (1987) The existence of an optimal range of cytosolic free calcium for insulin-stimulated glucose transport in rat adipocytes. J Biol Chem 262:14385–14388

    Google Scholar 

  • Draznin B, Lewis D, Houlder N, Sherman N, Adamo M, Garvey WT, LeRoith D, Sussman K (1989) Mechanism of insulin resistance induced by sustained levels of cytosolic free calcium in rat adipocytes. Endocrinology 125:2341–2349

    Google Scholar 

  • Dulin WE, Clark JJ (1961) Studies concerning a possible humoral factor produced by working muscles. Its influence on glucose utilization. Diabetes 10:289–297

    Google Scholar 

  • Ebashi S (1976) Excitation-contraction coupling. Annu Rev Physiol 38:293–313

    Google Scholar 

  • Etgen GJ, Bronzinick JT, Kang HY, Ivy JL (1993a) Effects of exercise training on skeletal muscle glucose uptake and transport. Am J Physiol 264:C727–C733

    Google Scholar 

  • Etgen GJ, Memon AR, Thompson CM Jr, Ivy JL (1993b) Insulin-and contraction-stimulated translocation of GTP-binding proteins and GLUT4 protein in skeletal muscle. J Biol Chem 268:20164–20169

    Google Scholar 

  • Ezaki O, Higuchi M, Nakatsuka H, Kawanaka K, Itakura H (1992) Exercise training increases glucose transporter content in skeletal muscles more efficiently from aged obese rats than young lean rats. Diabetes 41:920–926

    Google Scholar 

  • Fell RD, Terblanche SE, Ivy JL, Young JC, Holloszy JO (1982) Effects of muscle glycogen content on glucose uptake by muscle following exercise. J Appl Physiol 52:434–437

    Google Scholar 

  • Fitch CD, Jellinek M, Mueller EJ (1974) Experimental depletion of creatine and phosphocreatine from skeletal muscle. J Biol Chem 249:1060–1063

    Google Scholar 

  • Fitch CD, Jellinek M, Fitts RH, Baldwin KM, Holloszy JO (1975) Phosphorylated β-guanidinopropionate as a substitute for phosphocreatine in rat muscle. Am J Physiol 228:1123–1125

    Google Scholar 

  • Folli F, Saad MJA, Backer JM, Kahn CR (1992) Insulin stimulation of phosphatidylinositol 3-kinase activity and association with insulin receptor substrate 1 in liver and muscle of the intact rat. J Biol Chem 267:22171–22177

    Google Scholar 

  • Folli F, Saad MJA, Backer JM, Khan CR (1993) Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus. J Clin Invest 92:1787–1794

    Google Scholar 

  • Forsayeth JR, Gould MK (1982) Inhibition of insulin-stimulated xylose uptake in denervated rat soleus muscle: a post-receptor effect. Diabetologia 23:511–516

    Google Scholar 

  • Friedman JE, Sherman WM, Reed MJ, Elton CW, Dohm GL (1990) Exercise-training increases glucose transporter protein GLUT4 in skeletal muscle of obese Zucker (fa/fa) rats. FEBS Lett 268:13–16

    Google Scholar 

  • Friedman JE, Dohm GL, Leggett-Frazier N, Elton CW, Tapscott EB, Pories WP, Caro JF (1992) Restoration of insulin responsiveness in skeletal muscle of morbidly obese patients after weight loss. J Clin Invest 89:701–705

    Google Scholar 

  • Fukumoto H, Kayno T, Buse JB, Edwards Y, Pilch PF, Bell GI, Seino S (1989) Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J Biol Chem 264:7776–7779

    Google Scholar 

  • Furler SM, Jenkins AB, Storlien LH, Kraegen EW (1991) In vivo location of the rate-limiting step of hexose uptake in muscle and brain tissue of rats. Am J Physiol 261:E337–E347

    Google Scholar 

  • Fushiki T, Wells JA, Tapscott EB, Dohm GL (1989) Changes in glucose transporters in muscle in response to exercise. Am J Physiol 256:E580–E587

    Google Scholar 

  • Gao J, Gulve EA, Holloszy JO (1994a) Contraction-induced increase in muscle insulin sensitivity: requirement for a serum factor. Am J Physiol 266:E186–E192

    Google Scholar 

  • Gao J, Ren J, Gulve EA, Holloszy JO (1994b) Additive effect of contractions and insulin on GLUT4 translocation into the sarcolemma. J Appl Physiol 77:1597–1601

    Google Scholar 

  • Garetto LP, Richter EA, Goodman MN, Ruderman NB (1984) Enhanced muscle glucose metabolism after exercise in the rat: the two phases. Am J Physiol 246:E471–E475

    Google Scholar 

  • Garthwaite SM, Holloszy JO (1982) Increased permeability to sugar following muscle contraction. Inhibitors of protein synthesis prevent reversal of the increase in 3-methylglucose transport rate. J Biol Chem 257:5008–5012

    Google Scholar 

  • Garvey WT, Huecksteadt TP, Birnbaum MJ (1989) Pretranslational suppression of an insulin-responsive glucose transporter in rats with diabetes mellitus. Science 245:60–63

    Google Scholar 

  • Garvey WT, Maianu L, Hancock JA, Golichowski AM, Baron A (1992) Gene expression of GLUT4 in skeletal muscle from insulin-resistant patients with obesity, IGT, GDM, and NIDDM. Diabetes 41:465–475

    Google Scholar 

  • Giorgino F, Almahfouz A, Goodyear LJ, Smith RJ (1993) Glucocorticoid regulation of insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in vivo. J Clin Invest 91:2020–2030

    Google Scholar 

  • Goldstein MS, Mullick V, Huddleston B, Levine R (1953) Action of muscular work on transfer of sugars across cell barriers: comparison with action of insulin. Am J Physiol 173:212–216

    Google Scholar 

  • Gomperts BD (1990) GE: a GTP-binding protein mediating exocytosis. Annu Rev Physiol 52:591–606

    Google Scholar 

  • Goodman MN, Ruderman NB (1979) Insulin sensitivity of rat skeletal muscle: effects of starvation and aging. Am J Physiol 236:E519–E523

    Google Scholar 

  • Goodyear LJ, Hirshman MF, King PA, Horton ED, Thompson CM, Horton ES (1990a) Skeletal muscle plasma membrane glucose transport and glucose transporters after exercise. J Appl Physiol 68:193–198

    Google Scholar 

  • Goodyear LJ, King PA, Hirshman MF, Thompson CM, Horton ED, Horton ES (1990b) Contractile activity increases plasma membrane glucose transporters in absence of insulin. Am J Physiol 258:E667–E672

    Google Scholar 

  • Goodyear LJ, Hirshman MF, Horton ES (1991) Exercise-induced translocation of skeletal muscle glucose transporters. Am J Physiol 261:E795–E799

    Google Scholar 

  • Goodyear LJ, Hirshman MF, Valyou PM, Horton ES (1992) Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training. Diabetes 41:1091–1099

    Google Scholar 

  • Goodyear LJ, Giorgino F, Balon TW, Condorelli G, Smith RJ (1995a) Effects of contractile activity on tyrosine phosphoproteins and PI 3-kinase activity in rat skeletal muscle. Am J Physiol 268:E987–E995

    Google Scholar 

  • Goodyear LJ, Giorgino F, Sherman LA, Carey J, Smith RJ, Dohm GL (1995b) Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 95:2195–2204

    Google Scholar 

  • Greco-Perotto R, Wertheimer E, Jeanrenaud B, Cerasi E, Sasson S (1992) Glucose regulates its transport in L8 myocytes by modulating cellular trafficking of the transporter GLUT-1. Biochem J 286:157–163

    Google Scholar 

  • Green A (1986) The insulin-like effect of sodium vanadate on adipocyte glucose transport is mediated at a post-insulin receptor level. Biochem J 238:663–669

    Google Scholar 

  • Grimditch GK, Barnard RJ, Kaplan SA, Sternlicht E (1986) Effect of training on insulin binding to rat skeletal muscle sarcolemmal vesicles. Am J Physiol 250:E570–E575

    Google Scholar 

  • Grundleger ML, Thenen SW (1982) Decreased insulin binding, glucose transport, and glucose metabolism in soleus muscle of rats fed a high fat diet. Diabetes 31:232–237

    Google Scholar 

  • Gulve EA, Holloszy JO (1993) Sphingosine inhibits glucose transport activated by insulin or contractile activity in rat skeletal muscle. Biochem Life Sci Adv 12:75–80

    Google Scholar 

  • Gulve EA, Cartee GD, Zierath JR, Corpus VM, Holloszy JO (1990) Reversal of enhanced muscle glucose transport after exercise: roles of insulin and glucose. Am J Physiol 259:E685–E691

    Google Scholar 

  • Gulve EA, Ren J, Marshall BA, Gao J, Hansen PA, Holloszy JO, Mueckler M (1994) Glucose transport activity in skeletal muscles from transgenic mice overexpressing GLUT1. J Biol Chem 269:18366–18370

    Google Scholar 

  • Haber RS, Weinstein SP (1992) Role of glucose transporters in glucocorticoid-induced insulin resistance. GLUT4 isoform in rat skeletal muscle is not decreased by dexamethasone. Diabetes 41:728–735

    Google Scholar 

  • Hager SR, Jochen AL, Kalkhoff RK (1991) Insulin resistance in normal rats infused with glucose for 72 h. Am J Physiol 260:E353–E362

    Google Scholar 

  • Handberg A, Vaag A, Damsbo P, Beck Nielsen H, Vinten J (1990) Expression of insulin regulatable glucose transporters in skeletal muscle from type 2 (non-insulin-dependent) diabetic patients. Diabetologia 33:625–627

    Google Scholar 

  • Hansen BF, Hansen SA, Ploug T, Bak JF, Richter EA (1992) Effects of glucose and insulin on development of impaired insulin action in muscle. Am J Physiol 262:E440–E446

    Google Scholar 

  • Hansen PA, Gulve EA, Holloszy JO (1994) Suitability of 2-deoxyglucose for in vitro measurement of glucose transport activity in skeletal muscle. J Appl Physiol 76:979–985

    Google Scholar 

  • Hansen PA, Gulve E, Gao J, Schluter J, Mueckler M, Holloszy JO (1995a) Kinetics of 2-deoxyglucose transport in skeletal muscle: effects of insulin and contractions. Am J Physiol 268:C30–C35

    Google Scholar 

  • Hansen PA, Gulve EA, Marshall BA, Gao J, Pessin JE, Holloszy JO, Mueckler M (1995b) Skeletal muscle glucose transport and metabolism are enhanced in transgenic mice overexpressing the GLUT4 glucose transporter. J Biol Chem 270:1679–1684

    Google Scholar 

  • Haugaard ES, Mickel RA, Haugaard N (1974) Actions of lithium ions and insulin on glucose utilization, glycogen synthesis and glycogen synthase in the isolated rat diaphragm. Biochem Pharmacol 23:1675–1685

    Google Scholar 

  • Helmreich E, Cori CF (1957) Studies of tissue permeability. II. The distribution of pentoses between plasma and muscle. J Biol Chem 224:663–679

    Google Scholar 

  • Henriksen EJ, Holloszy JO (1991) Effect of diffusion distance on measurement of rat skeletal muscle glucose transport vitro. Acta Physiol Scand 143:381–386

    Google Scholar 

  • Henriksen EJ, Rodnick KJ, Holloszy JO (1989a) Activation of glucose transport in skeletal muscle by phospholipase C and phorbol ester. Evaluation of the regulatory roles of protein kinase C and calcium. J Biol Chem 264:21536–21543

    Google Scholar 

  • Henriksen EJ, Sleeper MD, Zierath JR, Holloszy JO (1989b) Polymyxin B inhibits stimulation of glucose transport in muscle by hypoxia or contractions. Am J Physiol 256:E662–E667

    Google Scholar 

  • Henriksen EJ, Bourey RE, Rodnick KJ, Koranyi L, Permutt MA, Holloszy JO (1990) Glucose transporter protein content and glucose transport capacity in rat skeletal muscles. Am J Physiol 259:E593–E598

    Google Scholar 

  • Henriksen EJ, Rodnick KJ, Mondon CE, James DE, Holloszy JO (1991) Effect of denervation or unweighting on GLUT4 protein in rat soleus muscle. J Appl Physiol 70:2322–2327

    Google Scholar 

  • Henriksson J, Chi MM-Y, Hintz CS, Young DA, Kaiser R, Salmons S, Lowry OH (1986) Chronic stimulation of mammalian muscle: changes in enzymes of six metabolic pathways. Am J Physiol 251:C614–C632

    Google Scholar 

  • Hespel P, Richter EA (1990) Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations. J Physiol (Lond) 427:347–359

    Google Scholar 

  • Hespel P, Vergauwen L, Vandenberghe K, Richter EA (1995) Important role of insulin and flow in stimulating glucose uptake in contracting skeletal muscle. Diabetes 44:210–215

    Google Scholar 

  • Heydrick SJ, Jullien D, Gautier N, Tanti J, Giorgetti S, Van Obberghen E, Le Marchand-Brustel Y (1993) Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice. J Clin Invest 91:1358–1366

    Google Scholar 

  • Hidaka H, Sasaki Y, Tanaka T, Endo T, Ohno S, Fujii Y, Nagata T (1981) N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci USA 78:4354–4357

    Google Scholar 

  • Hirshman MF, Wallberg-Henriksson H, Wardzala LJ, Horton ED, Horton ES (1988) Acute exercise increases the number of plasma membrane glucose transporters in rat skeletal muscle. FEBS Lett 238:235–239

    Google Scholar 

  • Hirshman MF, Goodyear LJ, Wardzala LJ, Horton ED, Horton ES (1990) Identification of an intracellular pool of glucose transporters from basal and insulin-stimulated rat skeletal muscle. J Biol Chem 265:987–991

    Google Scholar 

  • Goodyear LJ, Giorgino F, Balon TW, Condorelli G, Smith RJ (1995a) Effects of contractile activity on tyrosine phosphoproteins and PI 3-kinase activity in rat skeletal muscle. Am J Physiol 268:E987–E995

    Google Scholar 

  • Goodyear LJ, Giorgino F, Sherman LA, Carey J, Smith RJ, Dohm GL (1995b) Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 95:2195–2204

    Google Scholar 

  • Greco-Perotto R, Wertheimer E, Jeanrenaud B, Cerasi E, Sasson S (1992) Glucose regulates its transport in L8 myocytes by modulating cellular trafficking of the transporter GLUT-1. Biochem J 286:157–163

    Google Scholar 

  • Green A (1986) The insulin-like effect of sodium vanadate on adipocyte glucose transport is mediated at a post-insulin receptor level. Biochem J 238:663–669

    Google Scholar 

  • Grimditch GK, Barnard RJ, Kaplan SA, Sternlicht E (1986) Effect of training on insulin binding to rat skeletal muscle sarcolemmal vesicles. Am J Physiol 250:E570–E575

    Google Scholar 

  • Grundleger ML, Thenen SW (1982) Decreased insulin binding, glucose transport, and glucose metabolism in soleus muscle of rats fed a high fat diet. Diabetes 31:232–237

    Google Scholar 

  • Gulve EA, Holloszy JO (1993) Sphingosine inhibits glucose transport activated by insulin or contractile activity in rat skeletal muscle. Biochem Life Sci Adv 12:75–80

    Google Scholar 

  • Gulve EA, Cartee GD, Zierath JR, Corpus VM, Holloszy JO (1990) Reversal of enhanced muscle glucose transport after exercise: roles of insulin and glucose. Am J Physiol 259:E685–E691

    Google Scholar 

  • Gulve EA, Ren J, Marshall BA, Gao J, Hansen PA, Holloszy JO, Mueckler M (1994) Glucose transport activity in skeletal muscles from transgenic mice overexpressing GLUT1. J Biol Chem 269:18366–18370

    Google Scholar 

  • Haber RS, Weinstein SP (1992) Role of glucose transporters in glucocorticoid-induced insulin resistance. GLUT4 isoform in rat skeletal muscle is not decreased by dexamethasone. Diabetes 41:728–735

    Google Scholar 

  • Hager SR, Jochen AL, Kalkhoff RK (1991) Insulin resistance in normal rats infused with glucose for 72 h. Am J Physiol 260:E353–E362

    Google Scholar 

  • Handberg A, Vaag A, Damsbo P, Beck Nielsen H, Vinten J (1990) Expression of insulin regulatable glucose transporters in skeletal muscle from type 2 (non-insulin-dependent) diabetic patients. Diabetologia 33:625–627

    Google Scholar 

  • Hansen BF, Hansen SA, Ploug T, Bak JF, Richter EA (1992) Effects of glucose and insulin on development of impaired insulin action in muscle. Am J Physiol 262:E440–E446

    Google Scholar 

  • Hansen PA, Gulve EA, Holloszy JO (1994) Suitability of 2-deoxyglucose for in vitro measurement of glucose transport activity in skeletal muscle. J Appl Physiol 76:979–985

    Google Scholar 

  • Hansen PA, Gulve E, Gao J, Schluter J, Mueckler M, Holloszy JO (1995a) Kinetics of 2-deoxyglucose transport in skeletal muscle: effects of insulin and contractions. Am J Physiol 268:C30–C35

    Google Scholar 

  • Hansen PA, Gulve EA, Marshall BA, Gao J, Pessin JE, Holloszy JO, Mueckler M (1995b) Skeletal muscle glucose transport and metabolism are enhanced in transgenic mice overexpressing the GLUT4 glucose transporter. J Biol Chem 270:1679–1684

    Google Scholar 

  • Haugaard ES, Mickel RA, Haugaard N (1974) Actions of lithium ions and insulin on glucose utilization, glycogen synthesis and glycogen synthase in the isolated rat diaphragm. Biochem Pharmacol 23:1675–1685

    Google Scholar 

  • Helmreich E, Cori CF (1957) Studies of tissue permeability. II. The distribution of pentoses between plasma and muscle. J Biol Chem 224:663–679

    Google Scholar 

  • Henriksen EJ, Holloszy JO (1991) Effect of diffusion distance on measurement of rat skeletal muscle glucose transport vitro. Acta Physiol Scand 143:381–386

    Google Scholar 

  • Henriksen EJ, Rodnick KJ, Holloszy JO (1989a) Activation of glucose transport in skeletal muscle by phospholipase C and phorbol ester. Evaluation of the regulatory roles of protein kinase C and calcium. J Biol Chem 264:21536–21543

    Google Scholar 

  • Henriksen EJ, Sleeper MD, Zierath JR, Holloszy JO (1989b) Polymyxin B inhibits stimulation of glucose transport in muscle by hypoxia or contractions. Am J Physiol 256:E662–E667

    Google Scholar 

  • Henriksen EJ, Bourey RE, Rodnick KJ, Koranyi L, Permutt MA, Holloszy JO (1990) Glucose transporter protein content and glucose transport capacity in rat skeletal muscles. Am J Physiol 259:E593–E598

    Google Scholar 

  • Henriksen EJ, Rodnick KJ, Mondon CE, James DE, Holloszy JO (1991) Effect of denervation or unweighting on GLUT4 protein in rat soleus muscle. J Appl Physiol 70:2322–2327

    Google Scholar 

  • Henriksson J, Chi MM-Y, Hintz CS, Young DA, Kaiser R, Salmons S, Lowry OH (1986) Chronic stimulation of mammalian muscle: changes in enzymes of six metabolic pathways. Am J Physiol 251:C614–C632

    Google Scholar 

  • Hespel P, Richter EA (1990) Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations. J Physiol (Lond) 427:347–359

    Google Scholar 

  • Hespel P, Vergauwen L, Vandenberghe K, Richter EA (1995) Important role of insulin and flow in stimulating glucose uptake in contracting skeletal muscle. Diabetes 44:210–215

    Google Scholar 

  • Heydrick SJ, Jullien D, Gautier N, Tanti J, Giorgetti S, Van Obberghen E, Le Marchand-Brustel Y (1993) Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice. J Clin Invest 91:1358–1366

    Google Scholar 

  • Hidaka H, Sasaki Y, Tanaka T, Endo T, Ohno S, Fujii Y, Nagata T (1981) N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci USA 78:4354–4357

    Google Scholar 

  • Hirshman MF, Wallberg-Henriksson H, Wardzala LJ, Horton ED, Horton ES (1988) Acute exercise increases the number of plasma membrane glucose transporters in rat skeletal muscle. FEBS Lett 238:235–239

    Google Scholar 

  • Hirshman MF, Goodyear LJ, Wardzala LJ, Horton ED, Horton ES (1990) Identification of an intracellular pool of glucose transporters from basal and insulin-stimulated rat skeletal muscle. J Biol Chem 265:987–991

    Google Scholar 

  • Hofmann S, Pette D (1994) Low-frequency stimulation of rat fast-twitch muscle enhances the expression of hexokinase II and both the translocation and expression of glucose transporter 4 (GLUT-4). Eur J Biochem 219:307–315

    Google Scholar 

  • Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial O2 uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282

    Google Scholar 

  • Holloszy JO, Booth FW (1976) Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 38:273–291

    Google Scholar 

  • Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56:831–839

    Google Scholar 

  • Holloszy JO, Narahara HT (1965) Studies of tissue permeability. X. Changes in permeability to 3-methylglucose associated with contraction of isolated frog muscles. J Biol Chem 240:3493–3500

    Google Scholar 

  • Holloszy JO, Narahara HT (1967a) Nitrate ions: potentiation of increased permeability to sugar associated with muscle contraction. Science 155:573–575

    Google Scholar 

  • Holloszy JO, Narahara HT (1967b) Enhanced permeabilty to sugar associated with muscle contraction. Studies of the role of Ca++. J Gen Physiol 50:551–561

    Google Scholar 

  • Holman GD, Kozka IJ, Clark AE, Flower CJ, Saltis J, Habberfield AD, Simpson IA, Cushman SW (1990) Cell surface labeling of glucose transporter isoform GLUT4 by bis-mannose photolabel. J Biol Chem 265:18172–18179

    Google Scholar 

  • Horn RS, Walaas O, Walaas E (1973) The influence of sodium, potassium and lithium on the response of glycogen synthetase I to insulin and epinephrine in the isolated rat diaphragm. Biochem Biophys Acta 313:296–309

    Google Scholar 

  • Horton EG (1983) Increased insulin sensitivity without altered insulin-binding in rat soleus muscle. Excerpta Med Int Congr Ser 577:182

    Google Scholar 

  • Houmard JA, Shinebarger MH, Dolan PL, Leggett-Frazier N, Bruner RK, McCammon MR, Israel RG, Dohm GL (1993) Exercise training increases GLUT-4 protein concentration in previously sedentary middle-aged men. Am J Physiol 264:E896–E901

    Google Scholar 

  • Hughes VA, Fiatarone MA, Fielding RA, Kahn BB, Ferrara CM, Shepherd P, Fisher EC, Wolfe RR, Elahi D, Evans WJ (1993) Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. Am J Physiol 264:E855–E862

    Google Scholar 

  • Idström J-P, Elander A, Soussi B, Schersten T, Bylund-Fellenius A-C (1986) Influence of endurance training on glucose transport and uptake in rat skeletal muscle. Am J Physiol 251:H903–H907

    Google Scholar 

  • Ingle DJ, Nezamis JE, Rice KL (1950) Work output and blood glucose values in normal and in diabetic rats subjected to the stimulation of muscle. Endocrinology 46:505–509

    Google Scholar 

  • Ivy JL, Holloszy JO (1981) Persistent increase in glucose uptake by rat skeletal muscle following exercise. Am J Physiol 241:C200–C203

    Google Scholar 

  • Ivy JL, Young JC, McLane JA, Fell RD, Holloszy JO (1983) Exercise-training and glucose uptake by skeletal muscle in rats. J Appl Physiol 55:1393–1396

    Google Scholar 

  • Ivy JL, Sherman WM, Cutler CL, Katz AL (1986) Exercise and diet reduce muscle insulin resistance in obese Zucker rat. Am J Physiol 251:E299–E305

    Google Scholar 

  • Jahn R, Sudhof TC (1994) Synaptic vesicles and exocytosis. Annu Rev Physiol 17:219–246

    Google Scholar 

  • James DE, Kraegen EW, Chisholm DJ (1985) Effects of exercise-training on vivo insulin action in individual tissues of the rat. J Clin Invest 76:657–666

    Google Scholar 

  • James DE, Lederman L, Pilch PF (1987) Purification of insulin-dependent exocytic vesicles containing the glucose transporter. J Biol Chem 262:11817–11824

    Google Scholar 

  • James DE, Brown R, Navarro J, Pilch PF (1988) Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature 333:183–185

    Google Scholar 

  • James DE, Strube M, Mueckler M (1989) Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature Lond 338:83–87

    Google Scholar 

  • Jhun BH, Rampal AL, Lui H, Lachaal M, Jung CY (1992) Effects of insulin on steady state kinetics of GLUT4 subcellular distribution in rat adipocytes. J Biol Chem 267:17710–17715

    Google Scholar 

  • Kahn BB, Pedersen O (1993) Suppression of GLUT4 expression in skeletal muscle of rats that are obese from high fat feeding but not from high carbohydrate feeding or genetic obesity. Endocrinology 132:13–22

    Google Scholar 

  • Kahn BB, Rossetti L, Lodish HF, Charron MJ (1991) Decreased in vivo glucose uptake but normal expression of GLUT1 and GLUT4 in skeletal muscle of diabetic rats. J Clin Invest 87:2197–2206

    Google Scholar 

  • Kahn CR (1978) Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism [Suppl] 2:1893–1902

    Google Scholar 

  • Karlsson J, Saltin B (1971) Diet, muscle glycogen, and endurance performance. J Appl Physiol 31:203–206

    Google Scholar 

  • Karnieli EK, Zarnowski MJ, Hissin PJ, Simpson IA, Salans LB, Cushman SW (1981) Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell. J Biol Chem 256:4772–4777

    Google Scholar 

  • Kasahara M, Hinkle PC (1977) Reconstitution and purification of the d-glucose transporter from human erythrocytes. J Biol Chem 253:7384–7390

    Google Scholar 

  • Katz A, Broberg S, Sahlin K, Wahren J (1986) Leg glucose uptake during maximal dynamic exercise in humans. Am J Physiol 251:E65–E70

    Google Scholar 

  • Kemmer FW, Berger M, Herberg L, Gries FA, Wirdeier A, Becker K (1979) Glucose metabolism in perfused skeletal muscle. Demonstration of insulin resistance in the obese Zucker rat. Biochem J. 178:733–741

    Google Scholar 

  • Kern M, Wells JA, Stephens JM, Elton CW, Friedman JE, Tapscott EB, Pekala PH, Dohm GL (1990) Insulin responsiveness in skeletal muscle is determined by glucose transporter (GLUT 4) protein level. Biochem J 270:397–440

    Google Scholar 

  • King PA, Hirshman MF, Horton ED, Horton ES (1989) Glucose transport in skeletal muscle membrane vesicles from control and exercised rats. Am J Physiol 257:C1128–C1134

    Google Scholar 

  • King PA, Horton ED, Hirshman MF, Horton ES (1992) Insulin resistance in obese Zucker rat (fa/fa) skeletal muscle is associated with a failure of glucose transporter translocation. J Clin Invest 90:1568–1575

    Google Scholar 

  • King PA, Betts JJ, Horton ED, Horton ES (1993) Exercise, unlike insulin, promotes glucose transporter translocation in obese Zucker rat muscle. Am J Physiol 265:R447–R452

    Google Scholar 

  • Kipnis DM, Cori CF (1959) Studies of tissue permeability. V. The penetration and phosphorylation of 2-deoxyglucose in the rat diaphragm. J Biol Chem 234:171–177

    Google Scholar 

  • Klee CB, Newton DL, Ni WC, Haiech J (1986) Regulation of the calcium signal by calmodulin. Ciba Found Symp 122:162–170

    Google Scholar 

  • Klip A (1987) Hexose transport across skeletal muscle sarcolemma. In: Kidwai AM (ed) Sarcolemmal biochemistry, 2nd edn. CRC, Boca Raton, pp 129–153

    Google Scholar 

  • Klip A, Paquet MR (1990) Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care 13:228–243

    Google Scholar 

  • Klip A, Logan WJ, Li G (1982) Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites. Biochem Biophys Acta 687:265–280

    Google Scholar 

  • Klip A, Ramlal T, Young DA, Holloszy JO (1987) Insulin-induced translocation of glucose transporters in rat hindlimb muscles. FEBS Lett 224:224–230

    Google Scholar 

  • Klip A, Ramlal T, Bilan PJ, Cartee GD, Gulve EA, Holloszy JO (1990) Recruitment of GLUT4 glucose transporters by insulin in diabetic rat skeletal muscle. Biochem Biophys Res Commun 172:728–736

    Google Scholar 

  • Knight DE (1986) Calcium and exocytosis. Ciba Found Symp 122:250–265

    Google Scholar 

  • Kohn PG, Clausen T (1971) The relationship between the transport of glucose and cations across cell membranes in isolated tissues. VI. The effect of insulin, ouabain and metabolic inhibitors on the transport of 3-O-methylglucose and glucose in rat. Biochim Biophys Acta 225:277–290

    Google Scholar 

  • Kolterman OG, Insel J, Saekow M, Olefsky JM (1980) Mechanisms of insulin resistance in human obesity. J Clin Invest 65:1272–1284

    Google Scholar 

  • Kong X, Manchester J, Salmons S, Lawrence JC Jr (1994) Glucose transporters in single skeletal muscle fibers. J Biol Chem 269:12963–12967

    Google Scholar 

  • Kono T, Robinson FW, Blevins TL, Izaki O (1982) Evidence that translocation of the glucose transport activity is the major mechanism of insulin action on glucose transport in fat cells. J Biol Chem 257:10942–10947

    Google Scholar 

  • Kraegen EW, James DE, Jenkins AB, Chisholm DJ (1985) Dose-response curves for in vivo insulin sensitivity in individual tissues in rats. Am J Physiol 248:E353–E362

    Google Scholar 

  • Kraegen EW, James DE, Storlien LH, Burleigh KM, Chisholm DJ (1986) In vivo insulin resistance in individual peripheral tissues of the high fat fed rat: assessment by euglycaemic clamp plus deoxyglucose administration. Diabetologia 29:192–198

    Google Scholar 

  • Kusari J, Kenner KA, Suh K, Hill DE, Henry RR (1994) Skeletal muscle protein tyrosine phosphatase activity and tyrosine phosphatase 1B protein content are associated with insulin action and resistance. J Clin Invest 93:1156–1162

    Google Scholar 

  • Kusunoki M, Storlien LH, MacDessi J, Oakes ND, Kennedy C, Chisholm DJ, Kraegen EW (1993) Muscle glucose uptake during and after exercise is normal in insulin-resistant rats. Am J Physiol 264:E167–E172

    Google Scholar 

  • Lam K, Carpenter CL, Ruderman NB, Friel JC, Kelly KL (1994) The phosphatidylinositol 3-kinase serine kinase phosphorylates IRS-1. J Biol Chem 269:20648–20652

    Google Scholar 

  • Laurie SM, Cain CC, Lienhard GE, Castle JD (1993) The glucose transporter GluT4 and secretory carrier membrane proteins (SCAMPs) colocalize in rat adipocytes and partially segregate during insulin stimulation. J Biol Chem 268:19110–19117

    Google Scholar 

  • Lawrence JC (1992) Signal transduction and protein phosphorylation in the regulation of cellular metabolism by insulin. Annu Rev Physiol 54:177–193

    Google Scholar 

  • Le Marchand-Brustel Y, Freychet P (1978) Studies of insulin insensitivity in soleus muscles of obese mice. Metabolism 27:1982–1993

    Google Scholar 

  • Le Marchand-Brustel Y, Freychet P (1979) Effect of fasting and streptozotocin diabetes on insulin binding and action in the isolated mouse soleus muscle. J Clin Invest 64:1505–1515

    Google Scholar 

  • Le Marchand Y, Freychet P, Jeanrenaud B (1978a) Longitudinal study on the establishment of insulin resistance in hypothalamic obese mice. Endocrinology 102:74–85

    Google Scholar 

  • Le Marchand-Brustel Y, Jeanrenaud B, Freychet P (1978b) Insulin binding and effects in isolated soleus muscle of lean and obese mice. Am J Physiol 234:E348–E358

    Google Scholar 

  • Lee AD, Gulve EA, Chen M, Schluter J, Holloszy JO (1995a) Effects of Ca2+ ionophore ionomycin on insulin-stimulated and basal glucose transport in muscle. Am J Physiol 268:R997–R1002

    Google Scholar 

  • Lee AD, Hansen PA, Holloszy JO (1995b) Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett 361:51–54

    Google Scholar 

  • Lee J, Pilch PF (1994) The insulin receptor: structure, function, and signaling. Am J Physiol 266:C319–C334

    Google Scholar 

  • Lienhard GE, Slot JW, James DE, Mueckler MM (1992) How cells absorb glucose. Sci Am 266:86–91

    Google Scholar 

  • Liu C, Hermann TE (1978) Characterization of ionomycin as a calcium ionophore. J Biol Chem 253:5892–5894

    Google Scholar 

  • Lund S, Holman GD, Schmitz O, Pedersen O (1993) Glut 4 content in the plasma membrane of rat skeletal muscle: comparative studies of the subcellular fractionation method and the exofacial photolabelling technique using ATP-BMPA. FEBS Lett 330:312–318

    Google Scholar 

  • Lupien JR, Hirshman MF, Horton ES (1990) Effects of norepinephrine infusion on in vivo insulin sensitivity and responsiveness. Am J Physiol 259:E210–E215

    Google Scholar 

  • Maegawa H, Kobayashi M, Ishibashi O, Takata Y, Shigeta Y (1986) Effect of diet change on insulin action: difference between muscles and adipocytes. Am J Physiol 251:E616–E623

    Google Scholar 

  • Marette A, Richardson JM, Ramlal T, Balon TW, Vranic M, Pessin JE, Klip A (1992) Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle. Am J Physiol 263:C443–C452

    Google Scholar 

  • Marshall BA, Ren J, Johnson DW, Gibbs EM, Lillquist JS, Soeller WC, Holloszy JO, Mueckler M (1993) Germline manipulation of glucose homeostasis via alteration of glucose transporter levels in skeletal muscle. J Biol Chem 268:18442–18445

    Google Scholar 

  • Marshall S (1989) Kinetics of insulin action on protein synthesis in isolated adipocytes. Ability of glucose to selectively desensitize he glucose transport system without altering insulin stimulation of protein synthesis. J Biol Chem 264:2029–2036

    Google Scholar 

  • Marshall S, Bacote V, Traxinger RR (1991a) Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. J Biol Chem 266:4706–4712

    Google Scholar 

  • Marshall S, Garvey WT, Traxinger RR (1991b) New insights into the metabolic regulation of insulin action and insulin resistance: role of glucose and amino acids. FASEB J 5:3031–3036

    Google Scholar 

  • McGuire MC, Fields RM, Nyomba BL, Raz I, Bogardus C, Tonks NK, Sommercorn J (1991) Abnormal regulation of protein tyrosine phosphatase activities in skeletal muscle of insulin-resistant humans. Diabetes 40:939–942

    Google Scholar 

  • Megeney LA, Neufer PD, Dohm GL, Tan MH, Blewett CA, Elder GCB, Bonen A (1993) Effects of muscle activity and fiber composition on glucose transport and GLUT-4. Am J Physiol 264:E583–E593

    Google Scholar 

  • Megeney LA, Prasad MA, Tan MH, Bonen A (1994) Expression of the insulin-regulatable transporter GLUT-4 in muscle is influenced by neurogenic factors. Am J Physiol 266:E813–E816

    Google Scholar 

  • Mellgren RL (1987) Calcium-dependent proteases: an enzyme system active at cellular membranes? FASEB J: 1:110–115

    Google Scholar 

  • Mitsumoto Y, Klip A (1992) Developmental regulation of the subcellular distribution and glycosylation of GLUT1 and GLUT4 glucose transporters during myogenesis of L6 muscle cells. J Biol Chem 267:4957–4962

    Google Scholar 

  • Molé PA, Oscai LB, Holloszy JO (1971) Adaptation of muscle to exercise. Increase in levels of palmityl CoA synthetase, and in the capacity to oxidize fatty acids. J Clin Invest 50:2323–2330

    Google Scholar 

  • Mooseker MS, Coleman TR, Conzelman KA (1986) Calcium and the regulation of cytoskeletal assembly, structure and contractibility. Ciba Found Symp 122:232–245

    Google Scholar 

  • Mordes JP, Rossini AA. (1985) Animal models of diabetes mellitus. In: Marble A, Krall LP, Bradley RF, Christlieb HR, Soeldner JS (eds) Joslin's diabetes mellitus. Lea and Febiger, Philadelphia, pp 110–137

    Google Scholar 

  • Morgan HE, Whitfield CF (1973) Regulation of sugar transport in eukaryotic cells. Curr Top Membr Transp 4:255–303

    Google Scholar 

  • Morgan HE, Henderson MJ, Regen DM, Park CR (1961) Regulation of glucose uptake in muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats. J Biol Chem 236:253–261

    Google Scholar 

  • Morgan HE, Regen DM, Park CR (1964) Identification of a mobile carrier-mediated sugar transport system in muscle. J Biol Chem 239:369–374

    Google Scholar 

  • Mueckler M (1994) Facilitative glucose transporters. FEBS Eur J Biochem 219:713–725

    Google Scholar 

  • Mueckler M, Caruso C, Baldwin SA, Panico M, Blench M, Morris HR, Allard WJ, Lienhard GE, Lodish HF (1985) Sequence and structure of a human glucose transporter. Science 299:941–945

    Google Scholar 

  • Mueckler MM (1995) Glucose transport and glucose homeostasis: new insights from transgenic mice. NIPS 10:22–29

    Google Scholar 

  • Napoli R, Hirshman MF, Horton ES (1995) Mechanisms and time course of impaired skeletal muscle glucose transport activity in streptozocin diabetic rats. J Clin Invest 96:427–437

    Google Scholar 

  • Narahara HT, Ozand P, Cori CF (1960) Studies of tissue permeability. VII. The effect of insulin on glucose penetration and phosphorylation in frog muscle. J Biol Chem 235:3370–3378

    Google Scholar 

  • Narahara HT, Özand P (1963) Studies of tissue permeability. IX. The effect of insulin on the penetration of 3-methylglucose-H3 in frog muscle. J Biol Chem 238:40–49

    Google Scholar 

  • Nesher R, Karl IE, Kipnis DM (1980) Epitrochlearis muscle. II. Metabolic effects of contraction and catecholamines. Am J Physiol 239:E461–E467

    Google Scholar 

  • Nesher R, Karl IE, Kipnis DM (1985) Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am J Physiol 249:C226–C232

    Google Scholar 

  • Neufer PD, Carey JO, Dohm GL (1993) Transcriptional regulation of the gene for glucose transporter GLUT4 in skeletal muscle. J Biol Chem 268:13824–13829

    Google Scholar 

  • Nicholson WF, Watson PA, Booth FW (1984) Levels of blood-borne factors and cytosol glucocorticoid receptors during the initiation of muscle atrophy in rodent hind-limbs. Pfluegers Arch 401:321–323

    Google Scholar 

  • Nolte LA, Gulve EA, Holloszy JO (1994) Epinephrine-induced in vivo muscle glycogen depletion enhances insulin sensitivity of glucose transport. J Appl Physiol 76:2054–2058

    Google Scholar 

  • Nosadini R, Del Prato S, Tiengo A, Valerio A, Muggeo M, Opocher G, Mantero F, Duner E, Marescotti C, Mollo F, Belloni F (1983) Insulin resistance in Cushing's syndrome. Clin Endocrinol Metab 57:529–536

    Google Scholar 

  • Okada T, Kawano Y, Sakakibara T, Hazeki O, Ui M (1994) Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. J Biol Chem 269:3568–3573

    Google Scholar 

  • Okamoto M, Kono S, Inoue G, Hayashi T, Kosaki A, Maeda I, Kubota M, Kuzuya H, Imura H (1992) Effects of a high-fat diet on insulin receptor kinase and the glucose transporter in rats. J Nutr Biochem 3:241–250

    Google Scholar 

  • Olson AL, Liu ML, Moye RWS, Buse JB, Bell GI, Pessin JE (1993) Hormonal/metabolic regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice. J Biol Chem 268:9839–9846

    Google Scholar 

  • Özand P, Narahara HT, Cori CF (1962) Studies of tissue permeability. VIII. The effect of anaerobiosis on glucose uptake in frog sartorius muscle. J Biol Chem 237:3037–3043

    Google Scholar 

  • Pagano G, Cavallo-Perin P, Cassader M, Bruno A, Ozzello A, Masciola P, Dall'omo AM, Imbimbo B (1983) An in vivo and in vitro study of the mechanism of prednisone-induced insulin resistance in healthy subjects. J Clin Invest 72:1814–1820

    Google Scholar 

  • Palade P (1987) Drug induced Ca2+ release from isolated sarcoplasmic reticulum II. Releases involving a Ca2+ induced Ca2+ release channel. J Biol Chem 262:6142–6148

    Google Scholar 

  • Park CR, Reinwein D, Henderson MJ, Cadenas E, Morgan HE (1959) The action of insulin on the transport of glucose through the cell membrane. Am J Med 26:674–684

    Google Scholar 

  • Pedersen O, Bak JF, Andersen PH, Lund S, Moller DE, Flier JS, Kahn BB (1990) Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes 39:865–870

    Google Scholar 

  • Pette D, Staron RS (1990) Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 116:1–76

    Google Scholar 

  • Pette D, Tyler KR (1983) Response of succinate dehydrogenase activity in fibers of rabbit tibials anterior muscle to chronic nerve stimulation. J Physiol (Lond) 338:1–9

    Google Scholar 

  • Pette D, Vrbová G (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120:115–202

    Google Scholar 

  • Pette D, Smith ME, Staudte HW, Vrbova G (1973) Effects of long term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles. Pfluegers Arch 338:257–272

    Google Scholar 

  • Pette D, Ramirez BU, Muller W, Simon R, Exner GU (1975) Influence of intermittent long-term stimulation of contractile, histochemical and metabolic properties of fibre populations in fast and slow rabbit muscles. Eur J Physiol 361:1–7

    Google Scholar 

  • Pette D, Muller W, Leisner E, Vrbova G (1976) Time dependent effects on contractile properties, fiber population, myosin light chains and enzymes of energy metabolism in intermittently and continuously stimulated fast twitch muscles of the rabbit. Pfluegers Arch 364:103–112

    Google Scholar 

  • Philipson KD, Frank JS, Nishimoto AY (1983) Effects of phospholipase C on the Na+-Ca2+ exchange and Ca2+ permeability of cardiac sarcolemmal vesicles. J Biol Chem 258:5905–5910

    Google Scholar 

  • Ploug T, Galbo H, Richter EA (1984) Increased muscle glucose uptake during contractions: no need for insulin. Am J Physiol 247:E726–E731

    Google Scholar 

  • Ploug T, Galbo H, Vinten J, Jørgensen M, Richter EA (1987) Kinetics of glucose transport in rat muscle: effects of insulin and contractions. Am J Physiol 253:E12–E20

    Google Scholar 

  • Ploug T, Stallknecht BM, Pedersen O, Kahn BB, Ohkuwa T, Vinten J, Galbo H (1990) Effect of endurance-training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am J Physiol 259:E778–E786

    Google Scholar 

  • Ploug T, Galbo H, Ohkuwa T, Tranum-Jensen J, Vinten J (1992) Kinetics of glucose transport in rat skeletal muscle membrane vesicles: effects of insulin and contractions. Am J Physiol 262:E700–E711

    Google Scholar 

  • Ploug T, Ohkuwa T, Handberg A, Vissing J, Galbo H (1995) Effect of immobilization on glucose transport and glucose transporter expression in rat skeletal muscle. Am J Physiol 268:E980–E986

    Google Scholar 

  • Post RL, Morgan HE, Park CR (1961) Regulation of glucose uptake in muscle. III. The interaction of membrane transport and phosphorylation in the control of glucose uptake. J Biol Chem 236:269–272

    Google Scholar 

  • Ralston E, Beushausen S, Ploug T (1994) Expression of the synaptic vesicle proteins VAMPs/synaptobrevins 1 and 2 in non-neural tissues. J Biol Chem 269:15403–15406

    Google Scholar 

  • Randle PJ, Smith GH (1958) Regulation of glucose uptake by muscle. I. The effects of insulin anaerobiosis and cell poisons on the uptake of glucose and release of potassium by isolated rat diaphragm. Biochem J 70:490–508

    Google Scholar 

  • Rasmussen H, Barrett PQ (1984) Calcium messenger system: an integrated view. Physiol Rev 64:938–984

    Google Scholar 

  • Ren J, Marshall BA, Gulve EA, Gao J, Johnson DW, Holloszy JO, Mueckler M (1993a) Evidence from transgenic mice that glucose transport is rate-limiting for glycogen deposition and glycolysis in skeletal muscle. J Biol Chem 268:16113–16115

    Google Scholar 

  • Ren J, Youn JH, Gulve EA, Henriksen EJ, Holloszy JO (1993b) Effects of alkaline pH on the stimulation of glucose transport in rat skeletal muscle. Biochim Biophys Acta 1145:199–204

    Google Scholar 

  • Ren J, Semenkovich CF, Gulve EA, Gao J, Holloszy JO (1994) Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem 269:14396–14401

    Google Scholar 

  • Ren JM, Semenkovich C, Holloszy JO (1993c) Adaptation of muscle to creatine depletion: effect on GLUT-4 glucose transporter expression. Am J Physiol 264:C146–C150

    Google Scholar 

  • Rennie MJ, Idstrom JP, Mann GE, Schersten T, Bylund-Fellenius AC (1983) A paired-tracer dilution method for characterizing membrane transport in the perfused rat hindlimb. Biochem J 214:737–743

    Google Scholar 

  • Reusch JE-B, Begum N, Sussman KE, Draznin B (1991) Regulation of GLUT-4 phosphorylation by intracellular calcium in adipocytes. Endocrinology 129:3269–3273

    Google Scholar 

  • Richardson J, Balon TW, Treadway JL, Pessin JE (1991) Differential regulation of glucose transporter activity and expression in red and white skeletal muscle. J Biol Chem 266:12690–12694

    Google Scholar 

  • Richter EA, Garetto LP, Goodman MN, Ruderman NB (1982) Muscle glucose metabolism following exercise in the rat. Increased sensitivity to insulin. J Clin Invest 69:785–793

    Google Scholar 

  • Richter EA, Garetto LP, Goodman MN, Ruderman NB (1984) Enhanced muscle glucose metabolism after exercise: modulation by local factors. Am J Physiol 246:E476–E482

    Google Scholar 

  • Richter EA, Ploug T, Galbo H (1985) Increased muscle glucose uptake after exercise. No need for insulin during exercise. Diabetes 34:1041–1048

    Google Scholar 

  • Richter EA, Hansen BF, Hansen SA (1988a) Glucose-induced insulin-resistance of skeletal muscle glucose transport and uptake. Biochem J 252:733–737

    Google Scholar 

  • Richter EA, Hansen SA, Hansen BF (1988b) Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation. Am J Physiol 255:E621–E628

    Google Scholar 

  • Riddick FA, Reisler DM, Kipnis DM (1962) The sugar transport system in striated muscle. Effect of growth hormone, hydrocortisone and alloxan diabetes. Diabetes 2:171–178

    Google Scholar 

  • Robinson KA, Sens DA, Buse MG (1993) Pre-exposure to glucosamine induces insulin resistance of glucose transport and glycogen synthesis in isolated rat skeletal muscles. Study of mechanisms in muscle and in rat-1 fibroblasts overexpressing the human insulin receptor. Diabetes 42:1333–1346

    Google Scholar 

  • Robinson LJ, Pang S, Harris DS, Heuser J, James DE (1992) Translocation of the glucose transporter (GLUT4) to the cell surface in permeabilized 3T3-L1 adipocytes: effects of ATP, insulin, and GTPgamma and localization of GLUT4 to clathrin lattices. J Cell Biol 117:1181–1196

    Google Scholar 

  • Rodnick KJ, Holloszy JO, Mondon CE, James DE (1990) Effects of exercise-training on insulin-regulatable glucose-transporter protein levels in rat skeletal muscle. Diabetes 39:1425–1429

    Google Scholar 

  • Rodnick KJ, Henriksen EJ, James DE, Holloszy JO (1992a) Exercise-training, glucose transporters and glucose transport in rat skeletal muscles. Am J Physiol 262:C9–C14

    Google Scholar 

  • Rodnick KJ, Slot JW, Studelska DR, Hanpeter DE, Robinson LJ, Geuze HJ, James DE (1992b) Immunocytochemical and biochemical studies of GLUT4 in rat skeletal muscle. J Biol Chem 267:6278–6285

    Google Scholar 

  • Rosholt MN, King PA, Horton ES (1994) High-fat diet reduces glucose transporter responses to both insulin and exercise. Am J Physiol 266:R95–R101

    Google Scholar 

  • Rossetti L (1989) Normalization of insulin sensitivity with lithium in diabetic rats. Diabetes 38:648–652

    Google Scholar 

  • Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA (1987) Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 79:1510–1515

    Google Scholar 

  • Rossetti L, Hawkins M, Chen W, Gindi J, Barzilai N (1995) In vivo glucosamine infusion induces insulin resistance in normoglycemic but not in hyperglycemic conscious rats. J Clin Invest 96:132–140

    Google Scholar 

  • Rothenberg PL, Lane WS, Karasik A, Backer JM, White MF, Kahn CR (1991) Purification and partial sequence analysis of pp 185, the major cellular substrate of the insulin receptor tyrosine kinase. J Biol Chem 266:8302–8311

    Google Scholar 

  • Ruderman NB, Houghton CRS, Hems R (1971) Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism. Biochem J 124:639–651

    Google Scholar 

  • Saad MJA, Araki E, Miralpeix M, Rothenberg PL, White MF, Kahn CR (1992) Regulation of insulin receptor substrate-1 in liver and muscle of animal models of insulin resistance. J Clin Invest 90:1839–1849.

    Google Scholar 

  • Saad MJA, Folli F, Kahn JA, Kahn CR (1993) Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats. J Clin Invest 92:2065–2072

    Google Scholar 

  • Sarabia V, Lam L, Burdett E, Leiter LA, Klip A (1992) Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin. J Clin Invest 90:1386–1395

    Google Scholar 

  • Schatzman RC, Raynor RL, Kuo JF (1983) N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (W-7), a calmodulin antagonist, also inhibits phospholipid-sensitive calcium-dependent protein kinase. Biochim Biophys Acta 755:144–147

    Google Scholar 

  • Schultz TA, Lewis SB, Westbie DK, Wallin JD, Gerich JE (1977) Glucose delivery: a modulator of glucose uptake in contracting skeletal muscle. Am J Physiol 233:E514–E518

    Google Scholar 

  • Seider MJ, Nicholson WF, Booth FW (1982) Insulin resistance for glucose metabolism in disused soleus muscle of mice. Am J Physiol 242:E12–E18

    Google Scholar 

  • Sherman WM, Katz AL, Cutler CL, Withers RT, Ivy JL (1988) Glucose transport: locus of muscle insulin resistance in obese Zucker rats. Am J Physiol 255:E374–E382

    Google Scholar 

  • Shoubridge EA, Challis AJ, Hayes DJ, Radda GK (1985) Biochemical adaptation in the skeletal muscle of rats depleted of creatine with the substrate analogue β-guanidinopropionic acid. Biochem J 232:125–131

    Google Scholar 

  • Simpson IA, Cushman SW (1986) Hormonal regulation of mammalian glucose transport. Ann Rev Biochem 55:1059–1089

    Google Scholar 

  • Slentz CA, Gulve EA, Rodnick KJ, Henriksen EJ, Youn JH, Holloszy JO (1992) Glucose transporters and maximal transport are increased in endurance-trained rat soleus. J Appl Physiol 73:486–492

    Google Scholar 

  • Slieker LJ, Roberts EF, Shaw WN, Johnson WT (1990) Effect of streptozocin-induced diabetes on insulin-receptor tyrosine kinase activity in obese Zucker rats. Diabetes 39:619–625

    Google Scholar 

  • Slot JW, Geuze HJ, Gigengack S, James DE, Lienhard GE (1991a) Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. PNAS 88:7815–7819

    Google Scholar 

  • Slot JW, Geuze HJ, Gigengack S, Lienhard GE, James DE (1991b) Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J Cell Biol 113:123–135

    Google Scholar 

  • Smith RL, Lawrence JC (1984) Insulin action in denervated rat hemidiaphragms. J Biol Chem 259:2201–2207

    Google Scholar 

  • Sorenson SS, Christensen F, Clausen T (1980) The relationship between the transport of glucose and cations across cell membranes in isolated tissues. X. Effect of glucose transport stimuli on the efflux of isotopically-labelled calcium and 3-o-methylglucose from soleus muscles and epididymal fat pads of the rat. Biochim Biophys Acta 602:433–445

    Google Scholar 

  • Standaert ML, Farese RV, Cooper DR, Pollet RJ (1988) Insulin-induced glycerolipid mediators and the stimulation of d-glucose transport and insulin binding in isolated rat adipocytes. J Biol Chem 263:8696–8705

    Google Scholar 

  • Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic-free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60:700–707

    Google Scholar 

  • Storlien LH, James DE, Burleigh KM, Chisholm DJ, Kraegen EW (1986) Fat-feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. Am J Physiol 251:E576–E583

    Google Scholar 

  • Sudhof, TC, Jahn R (1991) Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 6:665–677

    Google Scholar 

  • Sun X-J, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden P, Cahill DA, Goldstein BJ, White MF (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77

    Google Scholar 

  • Sun X-J, Miralpeix M, Myers JR, Glasheen EM, Backer JM, Kahn CR, White MF (1992) Expression and function of IRS-1 in insulin signal transmission. J Biol Chem 267:22662–22672

    Google Scholar 

  • Susini C, Lavau M (1978) In-vitro and in-vivo responsiveness of muscle and adipose tissue to insulin in rats rendered obese by a high-fat diet. Diabetes 27:114–120

    Google Scholar 

  • Suzuki K, Kono T (1980) Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci USA 77:2542–2545

    Google Scholar 

  • Tabata I, Schluter J, Gulve EA, Holloszy JO (1994) Lithium increases susceptibility of muscle glucose transport to stimulation by various agents. Diabetes 43:903–907

    Google Scholar 

  • Tanaka T, Ohmura T, Yamakado T, Hidaka H (1982) Two types of calcium-dependent protein phosphorylations modulated by calmodulin antagonists. Naphthalenesul-fonamide derivatives. Mol Pharmacol 22:408–412

    Google Scholar 

  • Thies RS, Molina JM, Ciaraldi TP, Freidenberg GR, Olefsky JM (1990) Insulin receptor autophosphorylation and endogenous substrate phosphorylation in human adipocytes from control, obese and NIDDM subjects. Diabetes 39:250–258

    Google Scholar 

  • Thoidis G, Kotliar N, Pilch PF (1993) Immunological analysis of GLUT4-enriched vesicles. J Biol Chem 269:11691–11696

    Google Scholar 

  • Torgan CE, Etgen GJ, Kang HY, Ivy JL (1995) Fiber type-specific effects of clenbuterol and exercise training on insulin-resistant muscle. J Appl Physiol 79:163–167

    Google Scholar 

  • Treadway JL, James DE, Burcel E, Ruderman NB (1989) Effect of exercise on insulin receptor-binding and kinase activity in skeletal muscle. Am J Physiol 256:E138–E144

    Google Scholar 

  • Turinsky J (1987) Dynamics of insulin resistance in denervated slow and fast muscles vivo. Am J Physiol 252:R531–R537

    Google Scholar 

  • Valant P, Erlij D (1983) K+-stimulated sugar uptake in skeletal muscle: role of cytoplasmic Ca2+. Am J Physiol 245:C125–C132

    Google Scholar 

  • Vissing J, Ohkuwa T, Ploug T, Galbo H (1988) Effect of prior immobilization on muscular glucose clearance in resting and running rats. Am J Physiol 255:E456–E462

    Google Scholar 

  • Walker PM, Idström J-P, Schersten T, Bylund-Fellenius A-C (1982) Glucose uptake in relation to metabolic state in perfused rat hindlimb at rest and during exercise. Eur J Appl Physiol Occup Physiol 48:163–176

    Google Scholar 

  • Walker PS, Ramlal T, Donovan JA, Doering TP, Sandra A, Klip A, Pessin JE (1989) Insulin and glucose-dependent regulation of the glucose transport system in the rat L6 skeletal muscle cell line. J Biol Chem 264:6587–6595

    Google Scholar 

  • Wallberg-Henriksson H, Holloszy JO (1984) Contractile activity increases glucose uptake by muscle in severely diabetic rats. J Appl Physiol 57:1045–1049

    Google Scholar 

  • Wallberg-Henriksson H, Holloszy JO (1985) Activation of glucose transport in diabetic muscle: responses to contraction and insulin. Am J Physiol 249:C233–C237

    Google Scholar 

  • Wallberg-Henriksson H, Constable SH, Young DA, Holloszy JO (1988) Glucose transport into rat skeletal muscle: interaction between exercise and insulin. J Appl Physiol 65:909–913

    Google Scholar 

  • Wardzala LJ, Jeanrenaud B (1981) Potential mechanism of insulin action on glucose transport in the isolated rat diaphragm. J Biol Chem 256:7090–7093

    Google Scholar 

  • Wardzala LJ, Cushman SW, Salans LB (1978) Mechanism of insulin action on glucose transport in the isolated rat adipose cell. Enhancement of the number of functional transport systems. J Biol Chem 253:8002–8005

    Google Scholar 

  • Weber FE, Pette D (1990) Changes in free-and bound-forms and total amount of hexokinase isozyme II of rat muscle in response to contractile activity. Eur J Biochem 191:85–90

    Google Scholar 

  • Webster BA, Vigna SR, Paquette T (1986) Acute exercise, epinephrine, and diabetes enhance insulin-binding to skeletal muscle. Am J Physiol 250:E187–E197

    Google Scholar 

  • Weinstein SP, O'Boyle E, Haber RS (1994) Thyroid hormone increases basal and insulin-stimulated glucose transport in skeletal muscle. The role of GLUT4 glucose transporter expression. Diabetes 43:1185–1189

    Google Scholar 

  • Weinstein SP, Paquin T, Pritsker A, Haber RS (1995) Glucocorticoid-induced insulin resistance: dexamethasone inhibits the activation of glucose transport in rat skeletal muscle by both insulin-and non-insulin-related stimuli. Diabetes 44:441–445

    Google Scholar 

  • Westfall MW, Sayeed MM (1990) Effect of Ca2+-channel agonists and antagonists on skeletal muscle sugar transport. Am J Physiol 258:R462–R468

    Google Scholar 

  • White MF, Kahn CR (1994) The insulin signaling system. J Biol Chem 269:1–4

    Google Scholar 

  • White MF, Maron R, Kahn CR (1985) Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature 318:183–186

    Google Scholar 

  • Wilde MW, Slonczewski JL, Carson M, Zigmond SH (1986) Glycogen phosphorylase: a noninvasive indicator of cytoplasmic calcium. Methods Enzymol 141:18–25

    Google Scholar 

  • Wilson CM, Cushman SW (1994) Insulin stimulation of glucose transport activity in rat skeletal muscle: increase in cell surface GLUT4 as assessed by photolabelling. Biochem J 299:755–759

    Google Scholar 

  • Yang J, Holman GD (1993) Comparison of GLUT4 and GLUT1 subcellular trafficking in basal and insulin-stimulated 3T3-L1 cells. J Biol Chem 268:4600–4603

    Google Scholar 

  • Yeh J-I, Gulve EA, Rameh L, Birnbaum MJ (1995) The effects of wortmannin on rat skeletal muscle. J Biol Chem 270:2107–2111

    Google Scholar 

  • Yki-Jarvinen H, Helve E, Koivisto VA (1987) Hyperlgycemia decreases glucose uptake in type I diabetes. Diabetes 36:892–896

    Google Scholar 

  • Youn JH, Gulve EA, Holloszy JO (1991) Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. Am J Physiol 260:C555–C561

    Google Scholar 

  • Youn JH, Gulve EA, Henriksen EJ, Holloszy JO (1994a) Interactions between effects of W-7, insulin and hypoxia on glucose transport in muscle. Am J Physiol 267:R888–R894

    Google Scholar 

  • Youn JH, Kim JK, Buchanan TA (1994b) Time courses of changes in hepatic and skeletal muscle insulin action and GLUT4 protein in skeletal muscle after STZ injection. Diabetes 43:564–571

    Google Scholar 

  • Young DA, Uhl JJ, Cartee GD, Holloszy JO (1986) Activation of glucose transport in muscle by prolonged exposure to insulin: effects of glucose and insulin concentration. J Biol Chem 261:16049–16053

    Google Scholar 

  • Young DA, Wallberg-Henriksson H, Sleeper M, Holloszy JO (1987) Reversal of the exercise-induced increase in muscle permeability to glucose. Am J Physiol 253:E331–E335

    Google Scholar 

  • Young JC, Garthwaite SM, Bryan JE, Cartier L-J, Holloszy JO (1983) Carbohydrate-feeding speeds reversal of enhanced glucose uptake in muscle after exercise. Am J Physiol 245:R684–R688

    Google Scholar 

  • Ziel FH, Venkatesan N, Davidson MB (1988) Glucose transport is rate limiting for skeletal muscle glucose metabolism in normal and STZ-induced diabetic rats. Diabetes 37:885–890

    Google Scholar 

  • Zorzano A, Balon TW, Garetto LP, Goodman MN, Ruderman NB (1985) Muscle-aminoisobutyric acid transporter after exercise: enhanced stimulation by insulin. Am J Physiol 249:E546–E552

    Google Scholar 

  • Zorzano A, Balon TW, Goodman MN, Ruderman NB (1986a) Glycogen depletion and increased insulin sensitivity and responsiveness in muscle after exercise. Am J Physiol 251:E664–E669

    Google Scholar 

  • Zorzano A, Balon TW, Goodman MN, Ruderman NB (1986b) Additive effects of prior exercise and insulin on glucose and AIB uptake by muscle. Am J Physiol 251:E21–E26

    Google Scholar 

  • Zuniga-Guajardo S, Jimenez J, Zinman B (1986) Effects of massive obesity on insulin sensitivity and insulin clearance and the metabolic response to insulin as assessed by the euglycemic clamp technique. Metabolism 35:278–282

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this chapter

Cite this chapter

Holloszy, J.O., Hansen, P.A. (1996). Regulation of glucose transport into skeletal muscle. In: Reviews of Physiology Biochemistry and Pharmacology, Volume 128. Reviews of Physiology, Biochemistry and Pharmacology, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61343-9_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-61343-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61343-5

  • Online ISBN: 978-3-540-68502-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics