Skip to main content

Reaction-induced phase separation in modified thermosetting polymers

  • Chapter
  • First Online:
Book cover Polymer Analysis Polymer Physics

Part of the book series: Advances in Polymer Science ((POLYMER,volume 128))

Abstract

Thermosetting polymers are frequently used in formulations, including rubbers, thermoplastic polymers or oils, etc, in an amount of the order of 2–50 wt% with respect to the thermoset. This extra component, called the modifier, may initially be immiscible or may phase-separate during cure. This last process, i.e the reaction-induced phase separation, is the subject of this review. A thermodynamic description of the process is made, using the Flory-Huggins equation at two approximation levels, i.e. a quasi-binary approach and a multicomponent treatment taking polydispersity of constituents into account. Thermodynamic factors affecting the phase separation process are thus established. Nucleation and growth (NG) and spinodal demixing (SD) are considered as possible phase separation mechanisms. Factors promoting one or the other process are discussed. The control of morphologies generated is analyzed on the basis of thermodynamic and kinetic arguments. Ideas for obtaining particular morphologies enhancing particular properties are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

parameter included in the relationship between the Flory-Huggins interaction parameter and the absolute temperature

A4 :

tetrafunctional monomer

b:

slope of the relationship between the Flory-Huggins interaction parameter and the inverse of absolute temperature

b1, b2 :

constants included in the dependence of x with temperature and composition

B2 :

difunctional monomer

Cpart :

concentration of dispersed phase particles

\(\bar D\) :

average diameter of dispersed phase particles

d0, d1, d2 :

constants included in the dependence of x with temperature and composition

E:

elastic (Young's) modulus

Em,n :

oligomer produced by polycondensation, containing n molecular units of monomer and m molecular units of comonomer (hardener)

g:

interaction parameter depending on both temperature and composition

G:

Gibbs free energy

g0, g1, g10, g11 :

constants included in the dependence of g with temperature and composition

GIc :

fracture energy

h:

parameter in the Schultz-Zimm equation

H:

enthalpy

II :

integrated intensity of the scattered light

I(q) :

intensity of the scattered light as a function of the scattering vector

K:

ratio of the phase separation rate with respect to the cure reaction rate

kB :

Boltzmann constant

KIc :

critical stress intensity factor

M:

modifier

\(\bar M\) i :

molar mass of component i

\(\bar M\) n :

number-average molar mass

N:

number of moles

p:

conversion

P:

average species of the polymer

Pi :

macromolecule containing i monomer units

Pi,j,k :

macromolecule obtained by chain polymerization, containing i monomer units, j functional groups and k active centres

q:

scattering vector

r:

ratio of amine to epoxy equivalents

R:

gas constant

S:

entropy

t:

time

T:

absolute temperature

Tg :

glass transition temperature

gelTg:

temperature where gelation and vitrification take plase simultaneously

Tg :

ultimate glass transition temperature of the polymer network

Tr :

reaction temperature

U:

parameter in the Schulz-Zimm equation

V:

molar volume

v0 :

initial reaction rate

VD :

volume fraction of dispersed phase

VMS :

molar volume of the unit segment of a polymeric modifier

VPS :

molar volume of the unit segment of the thermosetting polymer

Vr :

molar volume of the unit cell (reference volume)

VT :

total volume of the system (extensive property)

x:

denotes the x-mer of a polymeric modifier

\(\overline {X_n }\) :

number-average degree of polymerization

\(\overline {X_w }\) :

mass-average degree of polymerization

y:

denotes the y-mer of the thermosetting polymer

Zc :

coordination number of a unit cell

Zi :

ratio of the molar volume of component i with respect to the molar volume of the unit cell

α-phase:

thermoset-rich phase

αi :

thermal expansion coefficient of component i

β-phase:

modifier-rich phase produced in the course of the primary phase separation

x:

Flory-Huggins interaction parameter

δ:

solubility parameter

δ-phase:

modifier-rich phase inside particles of the β-phase (secondary phase separation)

ΔG:

Gibbs free energy of mixing per unit volume of system

ΔGc :

free energy barrier for nucleation

ΔGM :

Gibbs free energy of mixing (extensive property)

ΔH:

enthalpy of mixing per unit volume of system

ΔHM :

enthalpy of mixing (extensive property)

ΔS:

entropy of mixing per unit volume of system

ΔSM :

entropy of mixing (extensive property)

Δμi :

chemical potential of component i

ε′:

exchange energy

εij :

energy of a contact between components i and j

φ:

volume fraction

γ:

constant included in the dependence of γ with temperature and composition

γ-phase:

thermoset-rich phase inside particles of the β-phase (secondary phase separation)

Γ:

gamma function

η:

viscosity

Λ:

interaction parameter with units of energy per unit volume

σ0 :

interfacial tension

σy :

yield stress

ω:

mass fraction

CP:

value of the cloud point

crit:

value at the critical point

gel:

value at the gel point

M:

modifier

0:

initial value

P:

polymer

S:

silicon chip

x:

x-mer of a polymeric modifier

y:

y-mer of the thermosetting polymer

AN:

acrylonitrile

ATBN:

amino-terminated butadiene-acrylonitrile copolymer

BD:

butadiene

BMC:

bulk moulding compound

CE:

cyanate ester

CO:

castor oil

CP:

cloud point

CPC:

cloud-point curve

CS:

core-shell particles

CTBN:

carboxyl-terminated butadiene-acrylonitrile copolymer

3DCM:

4,4′-diamino-3,3′-dimethyldicyclohexyl-methane

DGEBA:

diglycidyl ether of bisphenol A

EDA:

ethylenediamine

ETBN:

epoxy-terminated butadiene-acrylonitrile copolymer

FH:

Flory-Huggins

GMA:

glycidyl methacrylate

HIPS:

high-impact polystyrene

IPN:

interpenetrated polymer network

LCST:

lower-critical-solution temperature

LS:

light scattering

LT:

light transmission

NFBN:

non-functionalized copolymer of butadiene and acrylonitrile

NG:

nucleation-growth

NR:

nucleation rate

PDLC:

polymer-dispersed liquid crystal

PE:

polyester

PEI:

poly(etherimide)

PES:

poly(ethersulfone)

PICS:

pulse-induced-critical scattering

PVAc:

poly(vinylacetate)

PVME:

poly(vinylmethylether)

R:

rubber

S:

spinodal curve

SAXS:

small-angle-X-ray scattering

SBR:

styrene butadiene random copolymer

SD:

spinodal demixing

SEM:

scanning electron microscopy

SMC:

sheet moulding compound

SZ:

Schulz-Zimm equation

TEM:

transmission electron microscopy

TP:

thermoplastic

TTT:

time-temperature-transformation diagram

UCST:

upper-critical-solution temperature

UP:

unsaturated polyester

UV:

ultraviolet light

6 References

  1. Huang Y, Hunston DL, Kinloch AJ, Riew CK (1993). In: Riew CK, Kinloch AJ (eds) Toughened plastics 1: science and engineering. Adv Chem Ser 233, Am Chem Soc, Washington DC, p 1

    Google Scholar 

  2. Riew CK, Gillham JK (eds) (1984). In: Rubber-modified thermoset resins. Adv Chem Ser 208, Am Chem Soc, Washington DC

    Google Scholar 

  3. Riew CK (ed) (1989). In: Rubber toughened plastics. Adv Chem Ser 222, Am Chem Soc, Washington DC

    Google Scholar 

  4. Riew CK, Kinloch AJ (1993). In: Riew CK, Kinloch AJ (eds) Toughened plastics 1: science and engineering. Adv Chem Ser 233, Am Chem Soc, Washington DC

    Google Scholar 

  5. Sperling LH, Heck CS, An JH (1989). In: Utracki LA, Weiss RA (eds) Multiphase polymers: blends and ionomers. Adv Chem Ser 395, Am Chem Soc, Washington DC

    Google Scholar 

  6. Suspène L, Fourquier D, Yang YS (1991). Polymer 32: 1593

    Google Scholar 

  7. Hsu CP, Kinkelaar M, Hu P, Lee LJ (1991). Polym Eng Sc 31: 1450

    Google Scholar 

  8. Bucknall CB, Davies P Partridge IK (1985). Polymer 26: 109

    Google Scholar 

  9. Bucknall CB, Partridge IK, Phillips MJ (1991). Polymer 32: 786

    Google Scholar 

  10. Bucknall CB, Partridge IK, Phillips MJ (1991). Polymer 32: 636

    Google Scholar 

  11. Lucas JC, Borrajo J, Williams RJJ (1993). Polymer 34: 1886

    Google Scholar 

  12. Burns JM, Prime RB, Barrall EM, Oxsen ME, Wright SJ (1989). In: Mittal KL (ed) Polymers in Information Storage Technology. Plenum, New-York, p 237

    Google Scholar 

  13. Ho TH, Wang CS (1993). J Appl Polym Sci 50: 477

    Google Scholar 

  14. West JL (1988). Mol Cryst Liq Cryst 157: 427

    Google Scholar 

  15. Kim JY, Palffy-Muhoray P (1991). Mol Cryst Liq Cryst 203: 93

    Google Scholar 

  16. Dušek K (1982). In: Haward RN (ed) Developments in Polymerisation-3. Applied Science, Barking (UK), p 143

    Google Scholar 

  17. Mc Garry FJ, Willner AM (1968). Org Coat Plast Chem (ACS) 28: 512

    Google Scholar 

  18. Sultan JN, Laible RC, Mc Garry FJ (1971). J Appl Polym Sci 6: 127

    Google Scholar 

  19. Sultan JN, McGarry FJ (1973). Polym Eng Sci 13: 29

    Google Scholar 

  20. Pearson RA (1993). In: Riew CK, Kinloch AJ (eds) Toughened Plastics 1: Science and Engineering. Adv Chem Ser 233; Washington DC; Am Chem Soc, p 405

    Google Scholar 

  21. Kim BS, Chiba T, Inoue T (1993). Polymer 34: 2809

    Google Scholar 

  22. Bucknall CB, Gomez CM, Quintard I (1994). Polymer 35: 353

    Google Scholar 

  23. Pascault JP, Galy J, Mechin F (1994). In: Hamerton I (ed) Chemistry and Technology of Cyanate Ester Resins. Chapman & Hall, London, p 112

    Google Scholar 

  24. Williams RJJ, Borrajo J, Adabbo HE, Rojas AJ (1984). In: Riew CK, Gillham JK (eds) Rubber-Modified Thermoset Resins. Adv Chem Ser 208 Washington DC; Am Chem Soc p 195

    Google Scholar 

  25. Vazquez A, Rojas AJ, Adabbo HE, Borrajo J, Williams RJJ (1987). Polymer 28: 1156

    Google Scholar 

  26. Visconti S, Marchessault RH (1974). Macromolecules 7: 913

    Google Scholar 

  27. Wang TT, Zupko HM (1981). J Appl Polym Sci 26: 2391

    Google Scholar 

  28. Chan LC, Gillham JK, Kinloch AJ, Shaw SJ (1984). In: Riew CK, Gillham JK (eds) Rubber-Modified Thermoset Resins. Adv Chem Ser 208 Washington DC; Am Chem Soc p 235

    Google Scholar 

  29. Grillet AC, Galy J, Pascault JP (1992). Polymer 33: 34

    Google Scholar 

  30. Chen D, Pascault JP, Sautereau H, Vigier G (1993). Polym Int 32: 369

    Google Scholar 

  31. Delides CG, Hayward D, Pethrick RA, Vatalis AS (1993). J Appl Polym Sci 47: 2037

    Google Scholar 

  32. Seidl J, Malinsky J, Dušek K, Heitz W (1967). Adv Polym Sci 5: 113

    Google Scholar 

  33. Kun KA, Kunin R (1968). J Polym Sci Part A-1, 6: 2689

    Google Scholar 

  34. Dušek K (1971). In: Chompff A (ed) Polymer networks: Structural and Mechanical Properties. Plenum, New York, p 245

    Google Scholar 

  35. Dušek K (1967). J Polym Sci C16: 1289

    Google Scholar 

  36. Dušek K (1971). Chem Zvesti 25: 177

    Google Scholar 

  37. Moerkerke R, Koningsveld R, Berghmans H, Dušek K, Solč K (1995). Macromolecules 28: 1103

    Google Scholar 

  38. Ruseckaite RA, Hu L, Riccardi CC, Williams RJJ (1993). Polym Int 30: 287

    Google Scholar 

  39. Enns JB, Gillham JK (1983). J Appl Polym Sci 28: 2567

    Google Scholar 

  40. Manzione LT, Gillham JK, Mc Pherson CA (1981). J Appl Polym Sci 26: 889

    Google Scholar 

  41. Manzione LT, Gillham JK, Mc Pherson CA (1981). J Appl Polym Sci 26: 907

    Google Scholar 

  42. Fang DP, Frontini PM, Riccardi CC, Williams RJJ. Polym Eng Sci 35: 1359

    Google Scholar 

  43. Adabbo HE, Williams RJJ (1982). J Appl Polym Sci 27: 1327

    Google Scholar 

  44. Williams RJJ (1985). In: Whelan A, Craft J (eds) Developments in Plastics Technology-2. Elsevier, London, p. 339

    Google Scholar 

  45. Bucknall CB (1989). In: Allen G and Bevington JC (eds) Comprehensive Polymer Science — The Synthesis, Characterization, Reactions and Applications of Polymers 7, p 27

    Google Scholar 

  46. Hoffman DK, Arends CB: US Patent 4,708,996 (The Dow Chemical Co) 1987

    Google Scholar 

  47. Hoffman DK, Ortiz C, Hunston DL, Mc Donough W (1994). Polym Mat Sci Eng (ACS) 70: 7

    Google Scholar 

  48. Ortiz C, Mc Donough W, Hunston DL, Hoffman DK (1994). Polym Mat Sci Eng (ACS) 70: 9

    Google Scholar 

  49. Sue HJ, Garcia-Meitin EI, Pickelman DM, Yang PC (1993). In: Toughened Plastics 1: Science and Engineering. Adv Chem Ser 233; Washington DC; Am Chem Soc p 259

    Google Scholar 

  50. Riew CK, Siebert AR, Smith RW, Fernando M, Kinloch AJ (1994). Polym Mat Sci Eng (ACS) 70: 5

    Google Scholar 

  51. Qian JY, Pearson RA, Dimonie VL, El-Aasser MS (1994). Polym Mat Sci Eng (ACS) 70: 17

    Google Scholar 

  52. Maazouz A, Sautereau H, Gérard JF (1994). Polym Bull 33: 67

    Google Scholar 

  53. Levita G, Marchetti A, Lazzeri A (1991). Makromol Chem, Macromol Symp 41: 179

    Google Scholar 

  54. Mülhaupt R, Buchholz U (1994). Polym Mat Sci Eng (ACS) 70: 4

    Google Scholar 

  55. Kleintjens LA, Koningsveld R (1988). Makromol Chem, Macromol Symp 20/21: 203

    Google Scholar 

  56. Olabisi O, Roberson LM, Shaw MT: Polymer-Polymer Miscibility, New York, Academic Press 1979

    Google Scholar 

  57. Koningsveld R, Staverman AJ (1968). J Polym Sci A-2, 6, 305: 325

    Google Scholar 

  58. Koningsveld R, Kleintjens LA (1971). Macromolecules 4: 637

    Google Scholar 

  59. Dušek K (1969). Coll Czech Chem Comm 34: 3309

    Google Scholar 

  60. Qian C, Mumby SJ, Eichinger BE (1991). Macromolecules 24: 1655

    Google Scholar 

  61. Mumby SJ, Sher P (1994). Macromolecules 27: 689

    Google Scholar 

  62. Tompa H (1956). Polymer solutions, Butterworth, London

    Google Scholar 

  63. Dušek K (1972). J Polym Sci, C39: 83

    Google Scholar 

  64. Gordon M, Goldsbrough J, Ready B, Derham KW (1973). In: Industrial Polymers, Characterization by Molecular Weight, Transcripta Books, London, p 45

    Google Scholar 

  65. Moschiar SM, Riccardi CC, Williams RJJ, Verchère D, Sautereau H, Pascault JP (1991). J Appl Polym Sci 42: 717

    Google Scholar 

  66. Verchère D, Sautereau H, Pascault JP, Moschiar SM, Riccardi CC, Williams RJJ (1989). Polymer 30: 107

    Google Scholar 

  67. Roginskaya GF, Volkov VP, Chalykh AE, Avdeev NN, Rozenberg BA (1979). Enikolopyan NS Vysokomol Soedin A21: 2111

    Google Scholar 

  68. Chalykh AE, Volkov VP, Roginskaya GF, Avdeev NN, Matveev VV, Rozenberg BA (1981). Plast Massy 4: 25

    Google Scholar 

  69. Volkov VP, Roginskaya GF, Chalykh AE, Rozenberg BA (1982). Usp Khim 51: 1733

    Google Scholar 

  70. Roginskaya GF, Volkov VP, Kuzaev AI, Chalykh AE, Rozenberg BA (1984). Vysokomol Soedin A26: 1020

    Google Scholar 

  71. Chen D, Pascault JP, Bertsch RJ, Drake RS, Siebert AR (1994). J Appl Polym Sci 51: 1959

    Google Scholar 

  72. Chen D, Pascault JP, Sautereau H, Ruseckaite RA, Williams RJJ (1994). Polym Int 33: 253

    Google Scholar 

  73. Wang HB, Li SJ, Ye JY (1992). Polym Sci 44: 789

    Google Scholar 

  74. Iijima T, Tomoi M, Suzuki A, Kakiuchi H (1994). Eur Polym J 27: 851

    Google Scholar 

  75. Yorkgitis FM, Tran C, Eiss NS, Hu TY, Yilgor I, Wilkes GL, Mc Grath JE (1984). In: Rubber-Modified Thermoset Resins. Adv Chem Ser 208 Washington DC; Am Chem Soc p 137

    Google Scholar 

  76. Seris A, Pascault JP, Camberlin Y (1991). In: Abadie MJM and Sillion B (eds). Polyimides and other High-Temperature Polymers, Elsevier Sci Pub, Amsterdam, p 347

    Google Scholar 

  77. Solč K (1974). J Polym Sci Polym Phys Edn 12: 1865

    Google Scholar 

  78. Ruseckaite RA, Williams RJJ (1993). Polym Int 30: 11

    Google Scholar 

  79. Rehage G, Moller D, Ernst O (1965). Makromol Chem 38: 232

    Google Scholar 

  80. Šolc K (1970). Macromolecules 3: 665

    Google Scholar 

  81. Kamide K, Miyazaki Y (1981). Polym J 13: 325

    Google Scholar 

  82. Kamide K, Abe T, Miyazaki Y (1982). Polym J 14: 355

    Google Scholar 

  83. Kamide K, Matsuda S, Dobashi T, Kaneko M (1984). Polym J 16: 839

    Google Scholar 

  84. Šolc K, Kleintjens LA, Koningsveld R (1984). Macromolecules 17, 573

    Google Scholar 

  85. Matsuda S (1986). Polym J 18: 981

    Google Scholar 

  86. Rätzsch MT (1987). Makromol Chem Macromol Symp 12: 101

    Google Scholar 

  87. Kamide K, Matsuda S, Shirataki H (1990). Eur Polym J 26: 379

    Google Scholar 

  88. Mumby SJ, Sher P, Eichinger BE (1993). Polymer 34: 2540

    Google Scholar 

  89. Borrajo J, Riccardi CC, Williams RJJ, Cao ZQ, Pascault JP, Polymer, in press

    Google Scholar 

  90. Peebles LH (1971). In: Molecular Weight Distribution in Polymers, New York, Interscience-Wiley

    Google Scholar 

  91. Bauer M, Bauer J, Kuhn G (1986). Acta Polym 37: 715

    Google Scholar 

  92. Bauer M, Bauer J, Much H (1986). Acta Polym 37: 221

    Google Scholar 

  93. Bauer J, Bauer M (1987). Acta Polym 38: 16

    Google Scholar 

  94. Stutz H, Simak P (1993). Makromol Chem 194: 3031

    Google Scholar 

  95. Fukui K, Yamabe T (1960). J Polym Sci 45: 305

    Google Scholar 

  96. Fukui K, Yamabe T (1967). Bull Chem Soc Jpn 40: 2052

    Google Scholar 

  97. Shirataki H, Matsuda S, Kamide K (1990). Br Polym J 23: 299

    Google Scholar 

  98. Ricardi CC, Adabbo HE, Williams RJJ (1984). J Appl Polym Sci 29: 2481

    Google Scholar 

  99. Riccardi CC, Williams RJJ (1987). In: Sedlacek B and Kahovec J (eds) Crosslinked Epoxies, Berlin, de Gruyter, p 291

    Google Scholar 

  100. Riccardi CC, Borrajo J (1993). Polym Int 32: 241

    Google Scholar 

  101. Riccardi CC, Borrajo J, Williams RJJ (1994). Polymer 35: 5541

    Google Scholar 

  102. Roginskaya GF, Volkov VP, Chalykh AE, Matveev VV, Rozenberg BA, Enikolopyan NS (1980). Dokl Akad Nauk USSR 252: 402

    Google Scholar 

  103. Verchère D, Pascault JP, Sautereau H, Moschiar SM, Riccardi CC, Williams RJJ (1991), J Appl Polym Sci 42: 701

    Google Scholar 

  104. Bussi P, Ishida H (1994). J Polym Sci B: Polym Phys 32: 647

    Google Scholar 

  105. Clarke N, Mc Leish TCB, Jenkins SD (1995). Macromolecules 28: 4650

    Google Scholar 

  106. Cao ZQ (1994). Doctoral Thesis, INSA de Lyon (France)

    Google Scholar 

  107. Verchère D, Sautereau H, Pascault JP, Moschiar SM, Riccardi CC, Williams RJJ (1993). In: Riew CK, Kinloch AJ (eds) Toughened Plastics 1: Science and Engineering. Adv Chem Ser 233; Washington DC; Am Chem Soc, p 335

    Google Scholar 

  108. Greenwood GW (1956). Acta Metall 4: 243

    Google Scholar 

  109. Lifshitz IM, Slyozov VV (1961). J Phys Chem Solids 19: 35

    Google Scholar 

  110. Wagner C (1961). Z Elektrochemie 65: 581

    Google Scholar 

  111. Marqusee JA, Ross J (1984). J Chem Phys 80: 536

    Google Scholar 

  112. Bartels J, Lembke U, Pascova R, Schmelzer J, Gutzow I (1991). J Non-Cryst Solids 136: 181

    Google Scholar 

  113. Jo WH, Ko MB (1994). Macromolecules 27: 7815

    Google Scholar 

  114. Chen JP, Lee YD (1995). Polymer 36: 55

    Google Scholar 

  115. Rozenberg BA (1991). Makromol Chem, Macromol Symp 41: 165

    Google Scholar 

  116. Nikitin OV, Rozenberg BA (1992). Polym Sci USS 34: 365

    Google Scholar 

  117. Yamanaka K, Inoue T (1989). Polymer 30: 662

    Google Scholar 

  118. Yamanaka K, Takagi V, Inoue T (1989). Polymer 30: 1839

    Google Scholar 

  119. Yamanaka K, Inoue (1990). J Mater Sci 25: 241

    Google Scholar 

  120. Hsich HSY (1990). J Mater Sci 25: 1568

    Google Scholar 

  121. Hsich HSY (1990). Polym Eng Sci 30: 493

    Google Scholar 

  122. Inoue T (1995). Prog Polym Sci 20: 119

    Google Scholar 

  123. Ohnaga T, Chen W, Inoue T (1994), Polymer 35: 3774

    Google Scholar 

  124. Doremus RH (1985). In: Rates of Phase Transformations. Orlando (FL): Academic

    Google Scholar 

  125. Langhammer G, Nester L (1965). Makromol Chem 88: 179

    Google Scholar 

  126. Riess G (1986). In Initiation à la Chimie et à la Physicochimie Macromoléculaires. Mélanges des Polymères Vol 6, Strasbourg GFP

    Google Scholar 

  127. Binder K (1983). J Chem Phys 79: 6387

    Google Scholar 

  128. Donatelli AA, Sperling LH, Thomas DA (1976). Macromolecules 9: 671

    Google Scholar 

  129. Okada M, Fujimoto K, Nose T (1995). Macromolecules 28: 1795

    Google Scholar 

  130. Butta E, Levita G, Marchetti A, Lazzeri A (1986). Polym Eng Sci 26: 63

    Google Scholar 

  131. Montarnal S, Pascault JP, Sauterau H (1989). In: Riew CK (ed) Rubber Toughened Plastics. Adv Chem Ser 222 Washington DC; Am Chem Soc p 193

    Google Scholar 

  132. Roginskaya GF, Volkov VP, Dzhavadyan EA, Zaspinok GS, Rozenberg BA, Enikolopyan NS (1986). Dokl Akad Nauk USSR 290: 630

    Google Scholar 

  133. Chen TK, Jan YH (1992). J Mater Sci 27: 111

    Google Scholar 

  134. Ruseckaite RA, Fasce DP, Williams RJJ (1993). Polym Int 30: 297

    Google Scholar 

  135. Huang Y, Kinloch AJ, Bertsch RJ, Siebert AR (1993). In: Riew CK and Kinloch AJ (eds) Rubber Toughened Plastics. Adv Chem Ser 233 Washington DC; Am Chem Soc p 189

    Google Scholar 

  136. Cardwell BJ, Yee AF (1994). Polym Mat Sci Eng (ACS) 70: 254

    Google Scholar 

  137. Wilkinson SP, Ward TC, Mc Grath JE (1993). Polymer 34: 870

    Google Scholar 

  138. Norton LJ, Smigolova V, Pralle MU, Hubenko A, Dai KH, Kramer EJ, Hahn S, Berglund C, Dekoven B (1995). Macromolecules 28: 1999

    Google Scholar 

  139. Verchére D, Pascault JP, Sautereau H, Moschiar SM, Riccardi CC, Williams RJJ (1991). J Appl Polym Sci 43: 293

    Google Scholar 

  140. Riew CK, Rowe EH, Siebert AR (1976). In: Deanin RD and Crugnola AM (eds) Tougheness and Brittleness of Plastics. Adv Chem Ser 154 Washington DC Am Chem Soc p 326

    Google Scholar 

  141. Bascom WD, Ting RY, Moutton RJ, Riew CK, Siebert AR (1981). J Mater Sci 16: 2657

    Google Scholar 

  142. Kinloch AJ, Yuen ML, Jenkins SD (1994). J Mater Sci 29: 3781

    Google Scholar 

  143. Venderbosch RW, Nelissen JGL, Meijer HEM, Lemstra PJ (1993). Makromol Chem Macromol Symp 75: 73

    Google Scholar 

  144. de Graaf LA, Möller M (1994). Makromol Chem Macromol Symp 77: 149

    Google Scholar 

  145. Auschra C, Stadler R (1993). Macromolecules 26: 6364

    Google Scholar 

  146. Hendrick JL, Yilgor I, Wilkes GL, Mv Grath JE (1985). Polym Bull 13: 201

    Google Scholar 

  147. Cecere JA, Mc Grath JE (1986). Polym Prepr (Am Chem Soc Div Polym Chem) 27(1): 299

    Google Scholar 

  148. Hendrick JC, Patel NM, Mc Grath JE, in Ref 4 (1993). chap 11, 293

    Google Scholar 

  149. Van Dijk A, Eleveld MB, Van Veelen A (1992). Macromolecules 25: 2274

    Google Scholar 

  150. Fredrickson GH, Leibler L (1995). Macromolecules 28: 5198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this chapter

Cite this chapter

Williams, R.J.J., Rozenberg, B.A., Pascault, JP. (1997). Reaction-induced phase separation in modified thermosetting polymers. In: Polymer Analysis Polymer Physics. Advances in Polymer Science, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61218-1_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-61218-1_7

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61218-6

  • Online ISBN: 978-3-540-68374-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics