Advertisement

Reactivity criteria in charge sensitivity analysis

Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 183)

Abstract

The charge sensitivity analysis, based upon the hardness/softness concepts and the chemical potential (electronegativity) equalization principle established within the density functional theory, is used as a diagnostic tool for probing trends in the chemical reactivity of large molecular systems. The new criteria are reviewed with special emphasis on two-reactant reactivity concepts, which explicitly take into account the interaction between reactants in a general donor-acceptor system, and the collective charge displacement coordinate systems that give the most compact description of the charge reorganization accompanying chemical reactions. The global collective populational reference frames discussed include populational normal modes, minimum energy coordinates, and the relaxational modes; the reactant reference frames include internal modes of reactants as well as externally decoupled and inter-reactant-coupling modes. The charge-coupling information in the atoms-in-molecules resolution is modelled by the hardness matrix, which provides the canonical input data for determining a series of chemically interesting probes for diagnosing reactivity trends. A survey of these concepts includes the global treatment of molecular systems and the reactant-resolved description of general reactive systems. The molecular-fragment development emphasizes the relaxational influence of one reactant upon another, reflected by the off-diagonal charge sensitivities that measure the responses of one reactant to charge displacements in the other. Both open (exchanging electrons with the reservoir) and closed (preserving the number of electrons) reactive systems are investigated. Stability criteria for the equilibrium charge distribution in such systems are summarized and their implications discussed. The ground-state mapping relations between geometrical (nuclear position) and electronic (atomic charge) degrees of freedom are related to the Gutmann rules of structural chemistry. Illustrative examples are given of the application of these reactivity concepts to model catalytic clusters of transition metal oxide surfaces and large adsorbates (toluene).

Keywords

Charge Transfer Fukui Function Hardness Matrix Reactivity Criterion Charge Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Acronyms

A

Acid, Acidic (Reactant)

AIM

Atoms-in-Molecules (Level of Resolution)

B

Base, Basic (Reactant)

CI

Configuration Interaction (Method)

CS

Charge Sensitivities

CSA

Charge Sensitivity Analysis

CT

Charge Transfer (External or Internal)

DFT

Density Functional Theory

E

External (Stability/Instability)

EDM

Externally Decoupled Modes

EDM (→IDM)

EDM Determined to Resemble the Most (MOC) IDM

EDM (→MEC)

EDM Determined to Resemble the Most (MOC) MEC

EEM

Electronegativity Equalization Method

EPS

Electron Population Space

FF

Fukui Function

G

Group (Level of Resolution)

g

Global (Level of Resolution)

HK

Hohenberg-Kohn (DFT)

HOMO

Highest Occupied Molecular Orbital (Frontier MO)

I

Internal (Stability/Instability)

IDM

Internally Decoupled Modes

INDO

Intermediate Neglect of Differential Overlap (Approximation, Method)

INM

Internal Normal Modes

IRM

Inter-Reactant Modes

L

Local (Level of Resolution)

LUMO

Lowest Unoccupied Molecular Orbital (Frontier MO)

M

Molecular System

m-

Meta- Position in the Substituted Benzene Ring

MEC

Minimum Energy Coordinates

MNDO

Modified Neglect of Differential Overlap [NDDO (Neglect of Diatomic Differential Overlap) Approximation, Method]

MO

Molecular Orbital (Theory, Level of Resolution)

MOC

Maximum Overlap Criterion

NPS

Nuclear Position Space

o-

Ortho- Position in the Substituted Benzene Ring

P

Polarization/Polarizational (Internal or External)

p-

Para- Position in the Substituted Benzene Ring

PNM

Populational Normal Modes

REC

Relaxational Coordinates

REM

Relaxational Modes

SCF

Self Consistent Field (Method)

SINDO1

Symmetrically Orthogonalized INDO (Method)

STO-3G

Minimum Basis Set of Slater-type Orbitals, each Represented by 3 Gaussian Orbitals

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. 1.
    Hohenberg P, Kohn W (1964) Phys Rev B136: 864Google Scholar
  2. 2.
    Kohn W, Sham LJ (1965) Phys Rev A140: 1133Google Scholar
  3. 3.
    Parr RG, Yang W (1989) Density-Functional Theory of Atoms and Molecules. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Dreizler RM, Gross EKU (1990) Density Functional Theory: An Approach to the Quantum Many-Body Problem. Springer-Verlag, HeidelbergGoogle Scholar
  5. 5.
    Gross EKU, Draizler RM (eds) (1995) Proceedings of a NATO ASI on Density Functional Theory, Il Ciocco, August 16–27, 1993. Plenum Press, New YorkGoogle Scholar
  6. 6.
    Sen KD (ed) (1993) Structure and Bonding: Chemical Hardness. Springer-Verlag, HeidelbergGoogle Scholar
  7. 7.
    Nalewajski RF (1995) in: Gross EKU, Dreizler RM (eds) Proceedings of a NATO ASI on Density Functional Theory, Il Ciocco, August 16–27, 1993. Plenum Press, New York p 339–389Google Scholar
  8. 8.
    Nalewajski RF (1995) Int J Quantum Chem 56: 453Google Scholar
  9. 9.
    Nalewajski RF (1993) in: Sen KD (ed) Structure and Bonding, Volume 80: Chemical Hardness. Springer-Verlag, Heidelberg p 115–186; see also: Nalewajski RF, Korchowiec J (1989) J Mol Catal 54: 324Google Scholar
  10. 10.
    Baekelandt BG, Mortier WJ, Schoonheydt RA (1993) in: Sen KD (ed) Structure and Bonding, Volume 80: Chemical Hardness. Springer-Verlag, Heidelberg p 187–227Google Scholar
  11. 11.
    Fukui K (1973) Theory of Orientation and Stereoselection. Springer-Verlag, Heidelberg; (1982) Science 218: 747Google Scholar
  12. 12.
    Parr RG, Yang W (1984) J Am Chem Soc 106: 4049, Yang W, Parr RG (1985) Proc Natl Acad Sci USA 82: 6723Google Scholar
  13. 13.
    Falicov LM, Somorjai GA (1985) Proc Natl Acad Sci USA 82: 2207Google Scholar
  14. 14.
    Nalewajski RF, Korchowiec J, Zhou Z (1988) Int J Quantum Chem Symp 22: 349Google Scholar
  15. 15.
    Nalewajski RF (1990) Acta Phys Polon A77: 817Google Scholar
  16. 16.
    Antonova T, Neshev N, Proinov EI, Nalewajski RF (1991) Acta Phys Polon A79: 805Google Scholar
  17. 17.
    Pariser R (1953) J Chem Phys 21: 568Google Scholar
  18. 18.
    Ohno K (1967) Adv Quantum Chem 3: 239; (1968) Theoret Chim Acta 10: 111Google Scholar
  19. 19.
    Nishimoto K, Mataga N (1957) Z Physik Chem 12: 335; Mataga N, Nishimoto K (1957) Z Physik Chem 13: 140Google Scholar
  20. 20.
    Korchowiec J, Gerwens H, Jug K (1994) Chem Phys Lett 222: 58Google Scholar
  21. 21.
    Chattaraj PK, Parr RG (1993) in: Sen KD (ed) Structure and Bonding Volume 80: Chemical Hardness. Springer-Verlag, Heidelberg p 11–25; Parr RG, Chattaraj PJ (1991) J Am Chem Soc 113: 1854Google Scholar
  22. 22.
    Berkowitz M, Parr RG (1988) J Chem Phys 88: 2554Google Scholar
  23. 23.
    Baekelandt BG, Jansens GOA, Toufar H, Mortier WJ, Schoonheydt RA, and Nalewajski RF, (1995) J Phys Chem 99: 9784Google Scholar
  24. 24.
    Nalewajski RF (1991) Int J Quantum Chem 40: 265; (1992) Int J Quantum Chem 43: 443; see also Ref. 26Google Scholar
  25. 25.
    Nalewajski RF (1994) Int J Quantum Chem 49: 675Google Scholar
  26. 26.
    Nalewajski RF, Korchowiec J (1993) J Mol Catal 82: 383Google Scholar
  27. 27.
    Nalewajski RF, Michalak A (1995) Int J Quantum Chem 56: 603Google Scholar
  28. 28.
    Nalewajski RF, Korchowiec J (1995) Computers Chem 19: 217Google Scholar
  29. 29.
    Nalewajski RF, Koniński M (1987) Z Naturforsch 42a: 451Google Scholar
  30. 30.
    Decius JC (1963) J Chem Phys 38: 241; Jones LH, Ryan RR (1970) J Chem Phys 52: 2003Google Scholar
  31. 31.
    Swanson BI (1976) J Am Chem Soc 98: 3067; Swanson BI, Satija SK (1977) J Am Chem Soc 99: 987Google Scholar
  32. 32.
    Dewar MJS, Thiel W (1977) J Am Chem Soc 99: 4899Google Scholar
  33. 33.
    Gutmann V (1978) The Donor-Acceptor Approach to Molecular Interactions. Plenum Press, New YorkGoogle Scholar
  34. 34.
    RG Pearson (1976) Symmetry Rules for Chemical Reactions: Orbital Topology and Elementary Processes. Wiley, New York and references thereinGoogle Scholar
  35. 35.
    Bader RFW (1960) Mol Phys 3: 137; Bader RFW, Bandrauk AD (1968) J Chem Phys 49: 1666Google Scholar
  36. 36.
    Nakatsuji H (1974) J Am Chem Soc 96: 24, 30Google Scholar
  37. 37.
    Janssens GAO, Baekelandt BG, Toufar H, Mortier WJ, Schoonheydt RA (1995) Int J Quantum Chem 56: 317Google Scholar
  38. 38.
    Parr RG, Borkman RF (1968) J Chem Phys 49: 1055Google Scholar
  39. 39.
    Nalewajski RF (1989) in: J. Popielawski (ed) Proceedings of the International Symposium on the Dynamic of Systems with Chemical Reaction, Świdno, June 6–10, 1988. World Scientific, Singapore p 325Google Scholar
  40. 40.
    Nalewajski RF, Korchowiec J (1989) Acta Phys Polon A76: 747; Korchowiec J, Nalewajski RF (1992) Int J Quantum Chem 44: 1027Google Scholar
  41. 41.
    Gázquez JL (1993) in: Sen KD (ed) Structure and Bonding Volume 80: Chemical Hardness. Springer-Verlag, Heidelberg p 27–44Google Scholar
  42. 42.
    Morokuma K (1977) Acc Chem Res 10: 294Google Scholar
  43. 43.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68: 801; Donnelly RA, Parr RG (1978) J Chem Phys 69: 4431Google Scholar
  44. 44.
    Witko M, Tokarz R, Haber J (1991) J Mol Catal 66: 205Google Scholar
  45. 45.
    Nalewajski RF, Korchowiec J, Michalak A (1994) Gadre S (ed) Proc Indian Acad Sci (Chemical Sci) 106: 353Google Scholar
  46. 46.
    Gołebiewski A (1961) Trans Faraday Soc 57: 1849Google Scholar
  47. 47.
    Nalewajski RF (1993) J Mol Catal 82: 371Google Scholar
  48. 48.
    Nalewajski RF, Köster AM, Bredow T, Jug K (1993) J Mol Catal 82: 407Google Scholar
  49. 49.
    Kurtz RL, Stockbauer R, Madey TE, Román E, de Segovia JL (1989) Surf Sci 218: 178Google Scholar
  50. 50.
    Lo WJ, Chung YW, Somorjai GA (1978) Surf Sci 71: 199Google Scholar
  51. 51.
    Nanda DN, Jug K (1980) Theoret Chim Acta 57: 95; Jug K, Iffert R, Schulz J (1987) Int J Quant Chem 32: 265; Li J, Jug K (1992) J Comput Chem 13: 85Google Scholar
  52. 52.
    Nalewajski RF, Korchowiec J (1996) Charge Sensitivity Approach to Molecular Structure and Chemical Reactivity. World Scientific, Singapore; prepared for publicationGoogle Scholar
  53. 53.
    Callen HB (1960) Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics. Wiley, New YorkGoogle Scholar
  54. 54.
    Sanderson RT (1952) J Am Chem Soc 74: 272; (1976) Chemical Bonding and Bond Energy. Academic Press, New YorkGoogle Scholar
  55. 55.
    Nalewajski RF, Parr RG (1982) J Chem Phys 77: 399; Nalewajski RF (1983) J Chem Phys 78: 6112; Nalewajski RF (1988) Z Naturforsch 43a: 65; Nalewajski RF, Capitani JF (1982) J Chem Phys 77: 2514; Nalewajski RF (1985) J Phys Chem 89: 2831Google Scholar
  56. 56.
    Cohen MH, Ganduglia-Pirovano MV, Kurdnovský J (1994) J Chem Phys 101: 8988; (1994) Phys Rev Lett 72: 3222; J Chem Phys, In press; see also the next paper of this volumeGoogle Scholar
  57. 57.
    Nalewajski RF, Mrozek J (1992) Int J Quantum Chem 43: 353Google Scholar
  58. 58.
    Nalewajski RF (1992) Int J Quantum Chem 44: 67Google Scholar
  59. 59.
    Nalewajski RF, Koniński M (1984) J Phys Chem 88: 6234; (1988) Acta Phys Polon A74: 255; Nalewajski RF (1990) Acta Phys Polon A77: 817Google Scholar
  60. 60.
    Li L, Parr RG (1986) J Chem Phys 84: 1704; Rychlewski J, Parr RG (1986) J Chem Phys 84: 1696Google Scholar
  61. 61.
    Mortier WJ, Ghosh SK, Shankar S (1986) J Am Chem Soc 108: 4315; Mortier WJ (1987) in: Sen KD, Jorgensen CK (eds) Structure and Bonding Volume 66: Electronegativity. Springer Verlag, Heidelberg p 125–143; Mortier WJ, van Genechten K, Gasteiger J (1985) J Am Chem Soc 107: 829Google Scholar
  62. 62.
    Komorowski L, Lipiński J (1991) Chem Phys 157: 45; Komorowski L (1993) in: Sen KD (ed) Structure and Bonding, Volume 80: Chemical Hardness. Springer-Verlag, Heidelberg p 45–70Google Scholar
  63. 63.
    Bader RFW (1990) Atoms in Molecules: A Quantum Theory. Clarendon Press, OxfordGoogle Scholar
  64. 64.
    Ciosłowski J, Stefanov BB (1993) J Chem Phys 99: 5151Google Scholar
  65. 65.
    Ciosłowski J, Mixon ST (1993) J Am Chem Soc 115: 1084; Cioslowski J (1994) Int J Quantum Chem 49: 463; Ciosłowski J, Martinov M (1994) J Chem Phys 101: 366Google Scholar
  66. 66.
    Perdew JP, Parr RG, Levy M, Balduz JL (1982) Phys Rev Lett 49: 1691; see also: Perdew JP (1985) in: Dreizler RM, da Providência J (eds) Proceedings of a NATO ASI on Density Functional Methods in Physics, Alcabideche, September 5–16, 1983. Plenum Press, New York p 265–308Google Scholar
  67. 67.
    Lee C, Yang W, Parr RG (1988) J Mol Struct (Theochem) 163: 305Google Scholar
  68. 68.
    Gázquez JL, Vela A, Galván M (1987) in: Sen KD, Jorgensen CK (eds) Structure and Bonding Volume 66: Electronegativity. Springer Verlag, Heidelberg p 79Google Scholar
  69. 69.
    De Proft F, Langenaeker W, Geerlings P (1993) J Phys Chem 97: 1826; Langenaeker W, Demel K, Geerlings P (1991) J Mol Struct (Theochem) 234: 329Google Scholar
  70. 70.
    Bartolotti LJ, Gadre SR, Parr RG (1980) J Am Chem Soc 102: 2945; Robles J, Bartolotti LJ (1984) J Am Chem Soc 106: 3723Google Scholar
  71. 71.
    Sen KD (1993) in: Sen KD (ed) Structure and Bonding, Volume 80: Chemical Hardness. Springer-Verlag, Heidelberg p 87–100Google Scholar
  72. 72.
    March NH (1993) in: Sen KD (ed) Structure and Bonding, Volume 80: Chemical Hardness. Springer-Verlag, Heidelberg p 71–86Google Scholar
  73. 73.
    Alonso JA, Balbás LC (1993) in: Sen K (ed) Structure and Bonding, Volume 80: Chemical Hardness. Springer-Verlag, Heidelberg pp 229–258Google Scholar
  74. 74.
    Nalewajski RF (1992) Int J Quantum Chem 42: 243Google Scholar
  75. 75.
    Nalewajski RF (1996) Int J Quantum Chem, in pressGoogle Scholar
  76. 76.
    Nalewajski RF, Korchowiec J, Tokarz R, Brocławik E, Witko M (1992) J Mol Catal 77: 165Google Scholar
  77. 77.
    Witko M, Haber J, Tokarz R (1993) J Mol Catal 82: 457Google Scholar
  78. 78.
    Michalak A, Hermann K, unpublished resultsGoogle Scholar
  79. 79.
    Nalewajski RF, Korchowiec J (1995) J Mol Catal, in pressGoogle Scholar
  80. 80.
    Nalewajski RF, Mrozek J, Michalak A (1996) Int J Quantum Chem, in pressGoogle Scholar
  81. 81.
    Nalewajski RF, unpublished resultsGoogle Scholar
  82. 82.
    Nalewajski RF, Michalak A (1996) J Phys Chem, submitted.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  1. 1.K. Gumiński Department of Theoretical ChemistryJagiellonian UniversityCracowPoland
  2. 2.Department of Computational Methods in ChemistryJagiellonian UniversityCracowPoland

Personalised recommendations