Advertisement

Density functional theory calculations of pericyclic reaction transition structures

Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 183)

Keywords

Transition Structure Density Functional Theory Calculation Density Functional Theory Method Local Spin Density Approximation Claisen Rearrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Woodward RB, Hoffmann R (1969) Angew Chem 81:797; Angew Chem Int Ed Engl 8:781Google Scholar
  2. 2.
    Fukui K (1965) Tetrahedron Lett 2009Google Scholar
  3. 3.
    Fukui K (1965) Tetrahedron Lett 2427Google Scholar
  4. 4.
    Houk KN (1975) Acc Chem Research 8:361Google Scholar
  5. 5.
    Fleming I (1977) Frontier orbitals and organic chemical reactions Wiley, New YorkGoogle Scholar
  6. 6.
    For generalizations and a review, see: Houk KN, Li Y, Evanseck JD (1992) Angew Chem 104:711; Angew Chem Int Ed Engl 31:682Google Scholar
  7. 7.
    Houk KN, Gonzalez J, Li Y (1995) Acc Chem Research 28:81Google Scholar
  8. 8.
    Eg: Breulet F, Schaefer III HF (1984) J Am Chem Soc 106:1221Google Scholar
  9. 9.
    Spellmeyer DC, Houk KN (1988) J Am Chem Soc 110:3412Google Scholar
  10. 10.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902Google Scholar
  11. 11.
    Hsu K, Buenker RJ, Peyerimhoff SD (1971) J Am Chem Soc 93:2117Google Scholar
  12. 12.
    Deng L, Ziegler T (1995) J Phys Chem 99:612Google Scholar
  13. 13.
    Baker J, Muir M, Andzelm J (1995) J Chem Phys 102:2063Google Scholar
  14. 14.
    Wiest O, Houk KN, Black KA, Thomas IV B (1995) J Am Chem Soc 117:8594Google Scholar
  15. 15.
    Wiest O, Houk KN unpublished resultsGoogle Scholar
  16. 16.
    Carpenter JE, Sosa CP (1994) J Mol Struct (Theochem) 311:325Google Scholar
  17. 17.
    Cooper W, Walters WD (1958) J Am Chem Soc 80:4220Google Scholar
  18. 18.
    Carr RW, Walters WD (1965) J Phys Chem 69:1073Google Scholar
  19. 19.
    Gajewski JJ (1981) Hydrocarbon thermal isomerizations. Academic Press, New York, p. 49Google Scholar
  20. 20.
    Lipnick RL, Garbisch EW (1973) J Am Chem Soc 95:6370Google Scholar
  21. 21.
    Furukawa Y, Takeuchi H, Tasumi M (1983) Bull Chem Soc Jpn 56:392Google Scholar
  22. 22.
    Vosko SH, Wilk L, Nussair M (1980) Can J Chem 58:1200Google Scholar
  23. 23.
    The basis sets used in these calculations have been optimized for SVWN calculations: Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 72:560Google Scholar
  24. 24.
    Becke AD (1993) J Chem Phys 98:5648Google Scholar
  25. 25.
    Becke AD (1988) Phys Rev A38:3098Google Scholar
  26. 26.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785Google Scholar
  27. 27.
    Perdew J (1986) P Phys Rev B33:8822; compare also: Perdew JP (1986) Phys Rev B34:7406Google Scholar
  28. 28.
    Deng L, Ziegler T (1994) Int J Quant Chem 52:731Google Scholar
  29. 29.
    Baldwin JE, Reddy VP, Hess Jr BA, Schaad LJ (1988) J Am Chem Soc 110:8554Google Scholar
  30. 30.
    Lewis KE, Steiner H (1964) J Chem Soc 3080Google Scholar
  31. 31.
    Goldfarb TD, Landquist LJ (1967) J Am Chem Soc 89:4588Google Scholar
  32. 32.
    Thomas IV BE, Evanseck JD, Houk KN (1993) Isr J Chem 33:287Google Scholar
  33. 33a.
    Thomas IV BE, Evanseck JD, Houk KN (1993) J Am Chem Soc 115:4165Google Scholar
  34. 33b.
    Jiao H, Schleyer PvR (1994) J Chem Soc Perkin Trans 2:407Google Scholar
  35. 34.
    ΔHReact=−1 kcal/mol for trans, cis, cis, trans-2,4,6,8-decatetraene: Huisgen R, Dahmen A, Huber H (1969) Tetrahedron 1461Google Scholar
  36. 35.
    Li Y, Houk KN (1993) J Am Chem Soc 115:7478Google Scholar
  37. 36.
    Uchiyama M, Tomioka T, Amano A (1964) J Phys Chem 68:1878Google Scholar
  38. 37.
    Stanton RV, Merz Jr KM (1994) J Chem Phys 100:434Google Scholar
  39. 38.
    Jursic B, Zdravkovski Z (1995) J Chem Soc Perkin Trans 2:1223Google Scholar
  40. 39.
    Jursic B (1995) J Org Chem 60:4721Google Scholar
  41. 40.
    Goldstein E, Beno B, Houk KN (1995) J Am Chem Soc, in pressGoogle Scholar
  42. 41.
    Ochoa C, Beno B, Houk KN (1995) submitted for publicationGoogle Scholar
  43. 42.
    Erikson IA, Malikina OL, Malkin VG, Salahub DR (1994) J Chem Phys 1994 100:5066Google Scholar
  44. 43.
    Wang J, Becke AD, Smith Jr VH (1995) J Chem Phys 102:3477Google Scholar
  45. 44.
    Laming GJ, Handy NC, Amos RD (1993) Mol Phys 80:1121Google Scholar
  46. 45.
    Sosa C, Andzelm J, Lee C, Blake JF, Chenard BL, Butler TW (1994) Int J Quant Chem 49:511Google Scholar
  47. 46.
    Brown FK, Singh UC, Kollmann PA, Raimondi L, Houk KN, Bock CW (1992) J Org Chem 57:4862Google Scholar
  48. 47.
    McDoall JJW, Robb MA, Niazi U, Bernardi F, Schlegel B (1987) J Am Chem Soc 109:4642Google Scholar
  49. 48.
    Fulminic acid+acetylene: Ea=−11.0 kcal/mol, ΔH=−77.7 kcal/mol; Fulminic acid+ethylene:Ea=9.5 kcal/mol; ΔH=−42.8 kcal/molGoogle Scholar
  50. 49.
    Firestone RA (1977) Tetrahedron 33:3009Google Scholar
  51. 50.
    Sustmann R, Sicking W, Huisgen R (1995) J Am Chem Soc 117:9679Google Scholar
  52. 51.
    Hudlicky T, Kutchan TM, Naqvi SM (1985) Organic Reactions 33:247Google Scholar
  53. 52.
    Chickos J (1984) National ACS Meeting St Louis ORG228Google Scholar
  54. 53.
    Gajewski JJ, Olson LP (1991) J Am Chem Soc 113:7432; Gajewski JJ, Olson LP, Willcott MR (1996) J Am Chem Soc 118:299Google Scholar
  55. 54.
    Baldwin JE, Villarica KA (1994) Tetrahedron Lett 35:7905Google Scholar
  56. 55.
    Gajewski JJ, Squicciarini MP (1989) J Am Chem Soc 111:6717Google Scholar
  57. 56.
    Baldwin JE, Bonacorsi S (1994) J Org Chem 59:7401Google Scholar
  58. 57.
    Baldwin JE, Villarica KA, Freedberg DI, Anet FAL (1994) J Am Chem Soc 116:10845Google Scholar
  59. 58.
    Wilcott MR III, Cargle VH (1969) J Am Chem Soc 91:4310Google Scholar
  60. 59.
    Dewar MJS, Fonken GJ, Kirschner S, Mitner DE (1975) J Am Chem Soc 97:6750Google Scholar
  61. 60.
    Quirante JJ, Enriquez F, Hernando JM (1990) J Mol Struct (THEOCHEM) 204:193Google Scholar
  62. 61.
    Carpenter BK (1995) J Am Chem Soc 117:6336Google Scholar
  63. 62.
    Wiest O, Houk KN, Storer J, Fennen J, Nendel M (1995) National ACS Meeting Chicago ORGN33Google Scholar
  64. 63.
    Wellington CA (1962) J Phys Chem 66:1671Google Scholar
  65. 64.
    Adamo C, Barone V, Fortunelli A (1994) J Phys Chem 98:8648Google Scholar
  66. 65.
    Yamanaha S, Kawakami T, Nagao H, Yamaguchi K (1994) Chem Phys Lett 231:25Google Scholar
  67. 66.
    Baker J, Scheiner A, Andzelm J (1993) Chem Phys Lett 216:380Google Scholar
  68. 67.
    Jensen F, Houk KN (1987) J Am Chem Soc 109:3139Google Scholar
  69. 68.
    Kahn DD, Hehre WJ, Rondan NG, Houk KN (1985) J Am Chem Soc 107:8192Google Scholar
  70. 69.
    Rondan NG, Houk KN (1984) Tetrahedron Lett 25:2519Google Scholar
  71. 70.
    Dewar MJS, Healy EF, Ruiz JM (1988) J Am Chem Soc 110:2666Google Scholar
  72. 71.
    Kahn DD, Hehre WJ, Rondan NG, Houk KN (1985) J Am Chem Soc 107:8192Google Scholar
  73. 72.
    Liu Y-P, Lynch GC, Truong TN, Lu D-H, Truhlar DG, Garrett BC (1993) J Am Chem Soc 113:2408Google Scholar
  74. 73.
    Doering WvE, Roth WR, Breuckmann R, Figge L, Lennartz H-W, Fessner WD, Prinzbach H (1988) Chem Ber 121:1Google Scholar
  75. 74.
    The aromaticity of the calculated transition structure has also been confirmed by calculation of the magnetic susceptibility: Jiao H, Schleyer PvR (1994) J Chem Soc Faraday Trans 90:1559Google Scholar
  76. 75.
    Roth WR, Bauer F, Beitat A, Ebbrecht T, Wüstfeld M (1991) Chem Ber 124:1453Google Scholar
  77. 76.
    Dewar MJS, Jie C (1992) Acc Chem Res 25:537Google Scholar
  78. 77.
    Jiao H, Schleyer PvR (1995) Angew Chem 107:329 Angew Chem Int Ed Engl 34:334Google Scholar
  79. 78.
    Hrovat DA, Morokuma K, Borden WT (1994) J Am Chem Soc 116:1072Google Scholar
  80. 79.
    Kozlowski PM, Dupuis M, Davidson ER (1995) J Am Chem Soc 117:774Google Scholar
  81. 80.
    Borden WT, Loncharich RJ, Houk KN (1988) Ann Rev Phys Chem 39:213Google Scholar
  82. 81.
    Houk KN, Gustafson SM, Black KA (1992) J Am Chem Soc 114:8565Google Scholar
  83. 82.
    Dupuis M, Murray C, Davidson ER (1991) J Am Chem Soc 113:9756Google Scholar
  84. 83.
    Wiest O, Black KA, Houk KN (1994) J Am Chem Soc 116:10336Google Scholar
  85. 84.
    Doering WvE, Toscano VG, Beasley GH (1971) Tetrahedron 27:5299Google Scholar
  86. 85.
    Doering WvE, Roth W (1962) Tetrahedron 18:67Google Scholar
  87. 86.
    For early studies on SKIE of the Cope reaction see: Humski K, Malojcic R, Borcic S, Sunko DE (1970) J Am Chem Soc 92:6534Google Scholar
  88. 87.
    Experimental kinetic isotope effects are for the 1-methyl and 3-methyl 1,5-hexadienes: Gajewski JJ, Conrad ND (1979) J Am Chem Soc 101:6693Google Scholar
  89. 88.
    Vance RL, Rondan NG, Houk KN, Jensen F, Borden WT, Kormonicki A, Wimmer E (1988) J Am Chem Soc 110:2314Google Scholar
  90. 89.
    Yoo H-Y, Houk KN (1994) J Am Chem Soc 116:12047Google Scholar
  91. 90.
    Schuler FW, Murphy GW (1950) J Am Chem Soc 72:3155Google Scholar
  92. 91.
    The value of 30.8 kcal/mol has been criticized in the literature: Coates RM, Rodgers BD, Hobbs SJ, Peck DR, Curran DP (1987) J Am Chem Soc 109:1160Google Scholar
  93. 92.
    White WN, Wolfarth EF (1970) J Org Chem 35:2196Google Scholar
  94. 93.
    Haslam E (1993) Shikimic Acid Metabolism and Metabolites Wiley, New YorkGoogle Scholar
  95. 94.
    Davidson MM, Hillier IH, Hall RJ, Burton NA (1994) J. Am Chem Soc 116:9294Google Scholar
  96. 95.
    Storer JW, Giesen DJ, Hawkins GD, Lynch GC, Cramer CJ, Truhlar DG (1994) in: Cramer CJ, Truhlar DG (ed) Structure and Reactivity in Aqueous Solutions pp.24–49 (ACS Symposium Series 568). Other contributions to the same volume discuss alternative computational approaches to the solvent dependency of the Claisen reactionGoogle Scholar
  97. 96.
    Severance DL, Jorgensen WL (1992) J Am Chem Soc 114:10966.Google Scholar
  98. 97.
    Gao J (1994) J Am Chem Soc 116:1563Google Scholar
  99. 98.
    Gajewski JJ, Jurazj J, Kimbrough DR, Grande ME, Ganem B, Carpenter BK (1981) J Am Chem Soc 103:6983Google Scholar
  100. 99.
    Brandes E, Grieco PA, Gajewski JJ (1989) J Org Chem 54:515Google Scholar
  101. 100.
    Wiest O, Houk KN, J Am Chem Soc (1995) 117:11628Google Scholar
  102. 101.
    Davidson MM, Hillier IH (1994) J Chem Soc Perk Trans 2 1415Google Scholar
  103. 102.
    Davidson MM, Hillier IH (1994) Chem Phys Lett 225:293Google Scholar
  104. 103.
    Wiest O, Houk KN (1994) J Org Chem 59:7582Google Scholar
  105. 104.
    Andzelm J, Wimmer E (1992) J Chem Phys 96:1280Google Scholar
  106. 105.
    Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612Google Scholar
  107. 106.
    Ziegler T (1991) Chem Rev 91:651Google Scholar
  108. 107.
    Oliphant N, Bartlett RJ (1994) J Chem Phys 100:6550Google Scholar
  109. 108.
    Gill PMW, Johnson BG, Pople JA, Frisch MJ (1992) Int J Quant Chem: Quant Chem Symp 26:319Google Scholar
  110. 109.
    Rauhut G, Pulay P (1995) J Phys Chem 99:3093Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations