Skip to main content

Lotka Volterra coevolution at the edge of chaos

  • Conference paper
  • First Online:
Book cover Artificial Evolution (AE 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1063))

Included in the following conference series:

  • 179 Accesses

Abstract

In this paper, we study the coevolution of species by combining a theoretical approach with a computer simulation in order to show how a discrete distribution of viable species emerges. Coevolution is modelled as a replicator system which, with an additional diffusion term representing the mutation, leads to a Schrödinger equation. This system dynamics can be interpreted as a survival race between species on a multimodal sinking and drifting landscape whose modes correspond to the eigen modes of the Schrödinger equation. This coevolution dynamics is further illustrated by a simulation based on a continuous phenotypic model due to Kaneko in which the interactions between species are interpreted through a Lotka-Volterra model. This simulated coevolution is seen to converge to viable species associated with a dynamics at the edge of chaos (i.e with a null Lyapounov exponent). The transition from such a viable species to another results from some kind of tunnel effects characteristic of the punctuated equilibrium classically observed in biology in which rapid changes in the species distribution follow long plateaus of stable distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Aubin. Viability Theory. Birkhauser, 1991.

    Google Scholar 

  2. P. Bak. Self-organized criticality. Physica A, 1990.

    Google Scholar 

  3. P. Bak and K. Chen. Self-organized criticality. Scientific American, pages 26–33, January 1991.

    Google Scholar 

  4. P. Bak, H. Flyvbjerg, and B. Lautrup. Coevolution in a rugged fitness landscape. Phys. rev A, 46:6724–6730, November 1992.

    PubMed  Google Scholar 

  5. R. Feistel and W. Ebeling. Evolution of Complex Systems: Selforganization, Entropy and Development. Kluwer Academic,Dordrecht, 1989.

    Google Scholar 

  6. F.Hoffmeister and T. Báck. Genetic algorithms and evolution strategies: Similarities and differences. Technical report, University of Dortmund, 1992.

    Google Scholar 

  7. H. Flyvbjerg and B. Lautrup. Evolution in a rugged fitness landscape. Phys. rev A, 46:6714–6723, November 1992.

    PubMed  Google Scholar 

  8. K. Kaneko and J. Suzuki. Evolution to the edge of chaos in an imitation game. In Artificial Life III, 1994.

    Google Scholar 

  9. S. A. Kauffman and S. Johnsen. Co-evolution to the edge of chaos: coupled fitness landscape, poised states and co-evolutionary avalanches. In J. D. Farmer C. G. Langton, C. Taylor and S. Rasmussen, editors, Artificial Life II, Santa Fe, New Mexico, 1991. Addison Wesley.

    Google Scholar 

  10. S.G. Mikhlin. Integral equations. Pergamon Press, 1957.

    Google Scholar 

  11. H.-O. Peitgen, H. Jürgens, and D. Saupe. Chaos and Fractals: New Frontiers of Science. Springer-Verlag, New York, 1992.

    Google Scholar 

  12. M. Peschel and W. Mende. The Predator-Prey Model. Springer-Verlag, Wien, 1986.

    Google Scholar 

  13. H. G. Schuster. Deterministic Chaos: An Introduction. VCH Verlagsgesellschaft, 1989.

    Google Scholar 

  14. V. Volterra. Leçons sur la théorie mathématique de la lutte pour la vie. Herrmann & Cie, Paris, 1931.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jean-Marc Alliot Evelyne Lutton Edmund Ronald Marc Schoenauer Dominique Snyers

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bourgine, P., Snyers, D. (1996). Lotka Volterra coevolution at the edge of chaos. In: Alliot, JM., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds) Artificial Evolution. AE 1995. Lecture Notes in Computer Science, vol 1063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61108-8_35

Download citation

  • DOI: https://doi.org/10.1007/3-540-61108-8_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61108-0

  • Online ISBN: 978-3-540-49948-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics