Skip to main content

A security architecture for Tenet Scheme 2

  • Session 5: Multimedia Networking & Transport
  • Conference paper
  • First Online:
  • 153 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1045))

Abstract

The bandwith requirements of interactive multimedia applications are exhaustive, causing network congestion to be a major problem. One way to deal with this problem is to use a resource reservation scheme, such as e.g. Tenet Scheme 2. This paper proposes a security architecture for Tenet Scheme 2. The basic ideas are to use Internet layer security protocols, such as the IP Security Protocol (IPSP) and Internet Key Management Protocol (IKMP), to establish authentic communication channels between RCAP daemons, to handle client authentication and authorization locally, and to use a proxy-based mechanism to distribute access rights for target sets and channels. The security architecture uses as its building blocks a collision-resistant one-way hash function and a digital signature system.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Braden, L. Zhang, D. Estrin, S. Herzog, and S. Jamin. Resource ReServation Protocol (RSVP) — Version 1 Functional Specification. Internet Draft, November 1995. work in pogress.

    Google Scholar 

  2. F. Baker. RSVP Cryptographic Authentication. Internet Draft, November 1995. work in pogress.

    Google Scholar 

  3. D. Ferrari, A. Banerjea, and H. Zhang. Network support for multimedia — A discussion of the Tenet Approach. Computer Networks and ISDN Systems, 26:1267–1280, 1994.

    Google Scholar 

  4. A. Gupta and M. Moran. Channel Groups — A Unifying Abstraction for Specifying Inter-stream Relationships. TR-93-015, International Computer Science Institute (ICSI), Berkeley, CA, March 1993.

    Google Scholar 

  5. A. Gupta, W. Howe, M. Moran, and Q. Nguyen. Scalable resource reservation for multi-party real-time communication. TR-94-050, International Computer Science Institute (ICSI), Berkeley, CA, October 1994.

    Google Scholar 

  6. A. Gupta and D. Ferrari. Resource partitioning for multi-party real-time communication. TR-94-061, International Computer Science Institute (ICSI), Berkeley, CA, November 1994.

    Google Scholar 

  7. S. Deering and D.R. Cheriton. Multicast Routing in Datagram Internetworks and Extended LANs. ACM Transactions on Computer Systems, 8(2):85–110, 1990.

    Google Scholar 

  8. S. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis, Stanford University, December 1991.

    Google Scholar 

  9. R. Braden, D. Clark, S. Crocker, and C. Huitema. Report of IAB Workshop on Security in the Internet Architecture, February 8–10, 1994. Request for Comments 1636, June 1994.

    Google Scholar 

  10. B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley & Sons, Inc., New York, NY, 1994.

    Google Scholar 

  11. D. Stinson. Cryptography Theory and Practice. CRC Press, Boca Raton, FL, 1995.

    Google Scholar 

  12. R.L. Rivest. The MD4 Message-Digest Algorithm. Request for Comments 1320, April 1992.

    Google Scholar 

  13. R.L. Rivest and S. Dusse. The MD5 Message-Digest Algorithm. Request for Comments 1321, April 1992.

    Google Scholar 

  14. NIST. Secure Hash Standard (SHS). FIPS PUB 180, Gaithersburg, MD, May 1993.

    Google Scholar 

  15. L. Gong. Using One-Way Functions for Authentication. ACM Computer Communication Review, 19(5):8–11, 1989.

    Google Scholar 

  16. G. Tsudik. Message Authentication with One-Way Hash Functions. ACM Computer Communication Review, 22(5):29–38, 1992.

    Google Scholar 

  17. R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

    Article  Google Scholar 

  18. T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithm. IEEE Transactions on Information Theory, IT-31(4):469–472, July 1985.

    Article  Google Scholar 

  19. NIST. Digital Signature Standard (DSS). FIPS PUB 186, Gaithersburg, MD, May 1994.

    Google Scholar 

  20. ISO/IEC. Information Processing Systems — Open Systems Interconnection Reference Model — Part 2: Security Architecture. ISO/IEC 7498-2, 1989.

    Google Scholar 

  21. ISO/IEC. Information technology — Telecommunications and information exchange between systems — Network Layer Security Protocol. ISO/IEC 11577, 1993.

    Google Scholar 

  22. J. Ioannidis and M. Blaze. The Architecture and Implementation of Network-Layer Security Under Unix. In Proceedings of the USENIX UNIX Security IV Symposium, pages 29–39, Berkeley, CA, October 1993. USENIX Association.

    Google Scholar 

  23. NIST. Data Encryption Standard. FIPS PUB 46, Gaithersburg, MD, January 1977. Originally issued by National Bureau of Standards (NBS).

    Google Scholar 

  24. NIST. DES Modes of Operation. FIPS PUB 81, Gaithersburg, MD, December 1980. Originally issued by National Bureau of Standards (NBS).

    Google Scholar 

  25. P.C. Cheng, J.A. Garay, A. Herzberg, and H. Krawczyk. Design and Implementation of Modular Key Management Protocol and IP Secure Tunnel on AIX. In Proceedings of the USENIX UNIX Security V Symposium, Berkeley, CA, June 1995. USENIX Association.

    Google Scholar 

  26. A. Aziz, M. Patterson, and G Baehr. Simple Key-Management for Internet Protocols (SKIP). In Proceedings of the Internet Society International Networking Conference, June 1995.

    Google Scholar 

  27. H. Krawczyk. SKEME: A Versatile Secure Key Exchange Mechanism for Internet. In Proceedings of the Internet Society Symposium on Network and Distributed System Security, February 1996.

    Google Scholar 

  28. A. Liebl. Authentication in Distributed Systems: A Bibliography. ACM Operating Systems Review, 27(1):31–41, 1993.

    Google Scholar 

  29. B.C. Neuman. Proxy-Based Authorization and Accounting for Distributed Systems. In Proceedings of the 11th International Conference on Distributed Computing Systems, pages 283–291, May 1993.

    Google Scholar 

Download references

Authors

Editor information

Berthold Butscher Eckhard Moeller Herwart Pusch

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oppliger, R., Gupta, A., Moran, M., Bettati, R. (1996). A security architecture for Tenet Scheme 2. In: Butscher, B., Moeller, E., Pusch, H. (eds) Interactive Distributed Multimedia Systems and Services. IDMS 1996. Lecture Notes in Computer Science, vol 1045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60938-5_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-60938-5_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60938-4

  • Online ISBN: 978-3-540-49742-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics