Advertisement

On the successor function in non-classical numeration systems

  • Christiane Frougny
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1046)

Abstract

Let U be a strictly increasing sequence of integers, and let L(U) be the set of greedy U-representations of all the nonnegative integers. The successor function maps the greedy U-representation of N onto the greedy U-representation of N+1. We show that the successor function associated to U is computable by a finite 2-tape automaton if and only if the set L(U) is recognizable by a finite automaton.

Keywords

Terminal State Finite Index Finite Automaton Successor Function Numeration System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BH1]
    V. Bruyère and G. Hansel, Recognizable sets of numbers in nonstandard bases. Proc. Latin 95, Lecture Notes in Computer Science 911 (1995), 167–179.Google Scholar
  2. [BH2]
    V. Bruyère and G. Hansel, Bertrand Numeration Systems and Recognizability. Preprint.Google Scholar
  3. [Ch]
    Ch. Choffrut, Une caractérisation des fonctions séquentielles et des fonctions sousséquentielles en tant que relations rationnelles. T.C.S. 5 (1977), 325–337.CrossRefGoogle Scholar
  4. [E]
    S. Eilenberg, Automata, Languages and Machines, vol. A, Academic Press, 1974.Google Scholar
  5. [Fr]
    A.S. Fraenkel, Systems of numeration. Amer. Math. Monthly 92(2) (1985), 105–114.Google Scholar
  6. [F]
    Ch. Frougny, Representation of numbers and finite automata. Math. Systems Theory 25 (1992), 37–60.CrossRefGoogle Scholar
  7. [FSo]
    Ch. Frougny and B. Solomyak, On Representation of Integers in Linear Numeration Systems. LITP Report 94–54 (1994). To appear.Google Scholar
  8. [Ga]
    J.P. Gazeau, Quasicrystals and their Symmetries, in Symmetries and structural properties of condensed matter, Zajaczkowo 1994, Ed. T. Lulek, World Scientific. To appear.Google Scholar
  9. [GLT]
    P. Grabner, P. Liardet and R. Tichy, Odometers and systems of numeration. Acta Arithmetica LXXX. 2 (1995), 103–123.Google Scholar
  10. [Ho]
    M. Hollander, Greedy Numeration Systems and Recognizability. Preprint.Google Scholar
  11. [HU]
    J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979.Google Scholar
  12. [Sa]
    J. Sakarovitch, Deux remarques sur un théorème d'Eilenberg. R.A.I.R.O. Inforhmatique Théorique 17 (1) (1983), 23–48.Google Scholar
  13. [Sh]
    J. Shallit, Numeration Systems, Linear Recurrences, and Regular Sets. Proc. I.C.A.L.P. 92, Wien, Lecture Notes in Computer Science 623 (1992), 89–100.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Christiane Frougny
    • 1
  1. 1.Institut Blaise PascalUniversité Paris 8 and Laboratoire Informatique Théorique et ProgrammationParis Cedex 05France

Personalised recommendations