GEOFF — A geometrical editor for fold formation

  • Hing N. Ng
  • Richard L. Grimsdale
Session CG1b — Geometric Modeling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1024)


A new technique for modelling clothing is described in which the cloth layer is closely associated with the shape of the underlying flesh layer. The position of fold lines are determined on the basis of the distances between the layers. Folds are generated along the fold lines using a modified sinusoidal function. In contrast with techniques which are based on the physical properties of the material, the technique is fast and yet produces visually acceptable results. The technique has been incorporated within the GEOFF interactive editor which allows the user considerable control over fold generation.


Cloth Layer Deformable Model Profile Function Facial Animation Weave Cloth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Anderson: A Particle-based Model of the Draping Behaviour of Woven Cloth. Internal Report, Edinburgh Parallel Computer Centre, University of Edinburgh, September 1993.Google Scholar
  2. 2.
    M. Aono: A Wrinkle Propagation Model for Cloth. In: T.S. Chua, T.L. Kunii (eds.): CG International 90, Springer-Verlag, pp. 95–115, 1990.Google Scholar
  3. 3.
    D.E. Breen, D.H. House, P.H. Getto: A Physically-based Particle Model of Woven Cloth. The Visual Computer, Vol 8, pp. 264–277, 1992.Google Scholar
  4. 4.
    D.E. Breen, D.H. House, M.J. Wozny: Predicting the Drape of Woven Cloth Using Interacting Particles. Proc. of SIGGRAPH 94, pp. 365–372, 1994.Google Scholar
  5. 5.
    M. Carignan, Y. Yang, N. M-Thalmann, D. Thalmann: Dressing Animated Synthesis Actors with Complex Deformable Clothes. Proc. of SIGGRAPH 92, pp. 99–104, 1992.Google Scholar
  6. 6.
    J.E. Chadwick, D.R. Haumann, R.E. Parent: Layered Construction for Deformable Animated Characters. Proc. of SIGGRAPH 89, pp. 243–252, 1989.Google Scholar
  7. 7.
    S.G. Dhande, P.V.M. Rao, S. Tavakkoli, C.L. Moore: Geometric Modelling of Draped Fabric Surfaces. Proc. of the IFIP International Conf. on Computer Graphics ICCG 93, Elsevier Science Publishers B.V., pp. 349–356, 1993.Google Scholar
  8. 8.
    C.R. Feynman: Modelling the Appearance of Cloth. MSc Thesis, MIT, 1986.Google Scholar
  9. 9.
    B.K. Hinds, J. McCartney: Interactive Garment Design. The Visual Computer, Vol 6, pp. 53–61, 1990.Google Scholar
  10. 10.
    P. Kalra, A. Mangili, N. M-Thalmann, D. Thalmann: SMILE: A Multilayered Facial Animation System. In: T.L. Kunii (ed.): Modeling in Computer Graphics, Springer-Verlag, pp. 189–198, 1991.Google Scholar
  11. 11.
    T.L. Kunii, H. Gotoda: Singularity Theoretical Modelling and Animation of Garment Wrinkle Formation Processes. The Visual Computer, Vol 6, pp. 326–336, 1990.Google Scholar
  12. 12.
    B. Lafleur, N. M-Thalmann, D. Thalmann: Cloth Animation with Self-Collision Detection. In: Kunii T.L. (ed.): Modelling in Computer Graphics, Springer-Verlag Tokyo, pp. 179–187, 1991.Google Scholar
  13. 13.
    L. Li, M. Damodaran, R.K.L. Gay: A Quasi-Steady Force Model for Animating Cloth Motion. Proc. of the IFIP International Conf. on Computer Graphics ICCG 93, Elsevier-Science Publishers B.V., pp. 357–363, 1993.Google Scholar
  14. 14.
    N. M-Thalmann, Y. Yang: Techniques for Cloth Animation. In: N. M-Thalmann, D. Thalmann (eds.): New Trends in Animation and Visualisation, John Wiley and Sons, UK, pp. 243–256, 1991.Google Scholar
  15. 15.
    N. M-Thalmann: Tailoring Clothes for Virtual Actors. In: L. MacDonald, J. Vince (eds.): Interacting with Virtual Environments, John Wiley and Sons, UK, pp. 205–216, 1994.Google Scholar
  16. 16.
    H. Okabe, H. Imaoka, T. Tomiha, H. fnNiwaya: tThree Dimensional Apparel CAD System. Proc. of SIGGRAPH 92, pp. 105–10, 1992.Google Scholar
  17. 17.
    W.T. Reeves: Particle Systems — A Technique for Modeling a Class of Fuzzy Objects. Proc. of SIGGRAPH 83, pp. 91–108, 1983.Google Scholar
  18. 18.
    I.J. Rudomin: Simulating Cloth Using a Mixed Geometric-Physical Method, PhD Thesis, University of Pennsylvania, 1990.Google Scholar
  19. 19.
    F. Taillefer: Mixed Modelling. Proc. of CompuGraphics 91, pp. 467–478, 1991.Google Scholar
  20. 20.
    D. Terzopoulos, J. Platt, A. Barr, K. Fleischer: Elastically Deformable Models. Proc. of SIGGRAPH 87, Vol 24, No 4, pp. 205–214, 1987.Google Scholar
  21. 21.
    D. Terzopoulos, K. Fleischer: Deformable Models. The Visual Computer, Vol 4, pp. 306–331, 1988.Google Scholar
  22. 22.
    N. Tsopelas: Animating the Crumpling Behaviour of Garments. Proc. of Eurographics Workshop on Animation and Simulation 91, pp. 11–24, 1991.Google Scholar
  23. 23.
    K. Waters, D. Terzopoulos: A Physical Model of Facial Tissue and Muscle Articulation. Proc. of the 1st Conf. on Visualisation in Biomedical Computing, pp. 77–82, 1990.Google Scholar
  24. 24.
    J. Weil: The Synthesis of Cloth Objects. Proc. of SIGGRAPH 86, pp. 49–54, 1986.Google Scholar
  25. 25.
    H.M. Werner, N. M-Thalmann, D. Thalmann: User Interface for Fashion Design. Proc. of the IFIP International Conference on Computer Graphics ICCG 93, Elsevier-Science Publishers B.V., pp. 197–204, 1993.Google Scholar
  26. 26.
    Y. Yang, N. M-Thalmann, D. Thalmann: Three-dimensional Garment Design and Animation — A New Design Tool for the Garment Industry. Computers in Industry, Vol 19, pp. 185–191, 1992.Google Scholar
  27. 27.
    Y. Yang, N. M-Thalmann: An Improved Algorithm for Collision Detection in Cloth Animation with Human Body. Proc. of Pacific Graphics 93, pp. 237–251, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Hing N. Ng
    • 1
  • Richard L. Grimsdale
    • 1
  1. 1.Centre for VLSI and Computer Graphics, School of EngineeringUniversity of SussexFalmerUK

Personalised recommendations