Advertisement

The deformed cube: A visualization technique for 3D velocity vector field

  • Xundong Liang
  • Bin Li
  • Shenquan Liu
Session CG1a — Scientific Visualization
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1024)

Abstract

This paper presents a visualization method called the deformed cube for visualizing 3D velocity vector field. Based on the decomposition of the tensor which describes the changes of the velocity, it provides a technique for visualizing local flow. A deformed cube,a cube transformed by a tensor in a local coordinate frame, shows the local stretch, shear and rigid body rotation of the local flow corresponding to the decomposed component of the tensor. User can interactively view the local deformation or any component of the changes. The animation of the deformed cube moving along a streamline achieves a more global impression of the flow field. This method is intended as a complement to global visualization methods.

Keywords

Local Flow Curvature Vector Order Tensor Rigid Body Rotation Stretch Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Sadarjoen, T. van Walsum, A. J. S. Hin: Particle Tracing Algorithms for 3D Curvilinear Grids. Fifth Eurographics Workshop on Visualization in Scientific Computing, Rostock, Germany, May 1994.Google Scholar
  2. 2.
    K. Koyamada: Visualization of Simulated Airflow in a Clean Room. IEEE Proceedings of Visualization '92, Los Alamitos, Calif., (1992) pp.156–163.Google Scholar
  3. 3.
    X.D. Liang, B. Li, S. Q. Liu: Visualization of Three Dimensional Flow Fields. Proceedings of The International Conference for Young Computer Scientists, Beijing (1995).Google Scholar
  4. 4.
    J. L. Helman, L. Hesselink: Visualizing Vector Field Topology in Fluid Flows. IEEE Computer Graphics and Applications, May, (1991) pp.36–46.Google Scholar
  5. 5.
    J.J van Wijk, A. J. S. Hin, etc.: Three Ways to Show 3D Fluid Flows. IEEE Computer Graphics and Applications, Sept. (1994) pp.33–39.Google Scholar
  6. 6.
    L.Hesselink, F.H.Post: Research Issues in Vector and Tensor Field Visualization. IEEE Computer Graphics and Applications, March (1994) pp.76–79Google Scholar
  7. 7.
    O. C. Zienkiewize: Finite Elements and Approximation. John Wiley & Sons, (1983)Google Scholar
  8. 8.
    T. Delmarcelle, L. Hesselink: Visualizing Second Order Tensor Fields with Hyperstreamlines. IEEE Computer Graphics and Applications, (July, 1993) pp.25–33Google Scholar
  9. 9.
    T. Delmarcelle, L. Hesselink: Visualization of Second Order Tensor Fields and Matrix Data. IEEE Proceedings of Visualization '92, Los Alamitos, Calif., (1992)Google Scholar
  10. 10.
    W. C. de Leeuw, J.J van Wijk: A Probe for Local Flow Field Visualization. IEEE Proceedings of Visualization '93, Los Alamitos, Calif., (1993)Google Scholar
  11. 11.
    W. J. Schroeder, C. R. Volpe, W. E. Lorensen: The Stream Polygon: A Technique for 3D Vector Field Visualization. IEEE Proceedings of Visualization '92, (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Xundong Liang
    • 1
  • Bin Li
    • 1
  • Shenquan Liu
    • 1
  1. 1.CAD Lab.Institute of Computing Technology Academia SinicaBeijingChina

Personalised recommendations