Advertisement

The synthesis of perfect sequences

  • P. Z. Fan
  • M. Darnell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1025)

Abstract

Perfect sequences find application in many areas including synchronisation techniques, channel estimation, fast start-up equalization, pulse compression radars and CDMA systems. This paper will first discuss the necessary and sufficient condition for, and some useful properties of, perfect sequences. Then, a comprehensive description of various perfect sequences is given. The emphasis will be on the synthesis of different perfect sequences, including two-valued perfect sequences, ternary perfect sequences, polyphase perfect sequences and modulatable perfect sequences. The perfect array and other related topics are also discussed briefly.

Keywords

Channel Estimation Binary Sequence Bend Function Perfect Sequence Ternary Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Rohling and W. Plagge, “Mismatched-filter design for periodical binary phased signals”, IEEE Trans. on Aerospace and Electronic Systems, vol. AES-25, no. 6, pp. 890–897, November 1989.CrossRefGoogle Scholar
  2. 2.
    H. D. Lüke, “Sequences and arrays with perfect periodic correlation”, IEEE Trans. on Aerospace and Electron. Systems, vol. AES-24, no. 3, pp. 287–294, May 1988.CrossRefGoogle Scholar
  3. 3.
    S. U. H. Qureshi, “Fast start-up equalization with periodic training sequences”, IEEE Trans. on Information Theory, vol. IT-23, pp. 553–563, 1977.CrossRefGoogle Scholar
  4. 4.
    A. Milewski, “Periodic sequences with optimal properties for channel estimation and fast start-up equalization”, IBM J. RES. DEVELOP., vol. 27, no. 5, pp. 426–431, Sept. 1983.Google Scholar
  5. 5.
    K. R. Godfrey, “Three-level m sequences”, Electron. Lett., vol. 2, no. 7, pp. 241–243, July 1966.Google Scholar
  6. 6.
    N. Levanon and A. Freedman, “Periodic ambiguity function of CW signals with perfect periodic autocorrelation”, IEEE Trans. on Aerospace and Electronic Systems, vol. AES-28, no. 2, pp. 387–395, April 1992.CrossRefGoogle Scholar
  7. 7.
    F. F. Kretschmer Jr. and K. Gerlach, “Low sidelobe radar waveforms derived from orthogonal matrices”, IEEE Trans. on AES, vol. AES-27, no. 1, pp. 92–101, Jan. 1991.Google Scholar
  8. 8.
    N. Suehiro and M. Hatori, “Modulatable orthogonal sequences and their application to SSMA systems”, IEEE Trans. on Information Theory, vol. IT-34, pp. 93–100, Jan. 1988.CrossRefGoogle Scholar
  9. 9.
    D. V. Sarwate, “Bounds on crosscorrelation and autocorrelation of sequences”, IEEE Transactions on Information Theory, vol. 25, pp. 720–724, 1979.CrossRefGoogle Scholar
  10. 10.
    S. W. Golomb, “Two-valued sequences with perfect periodic autocorrelation”, IEEE Trans. on Aerospace and Electronic Systems, vol. AES-28, no. 2, pp. 383–386, April 1992.CrossRefGoogle Scholar
  11. 11.
    J. A. Chang, “Ternary sequence with zero correlation”, Proceedings of the IEEE, Vol. 55, no. 7, pp. 1211–1213, July 1967.Google Scholar
  12. 12.
    P. S. Moharir, “Generalized PN sequences”, IEEE Trans. on Inform. Theory, vol. IT-23, no. 6, pp. 782–784, Nov. 1977.CrossRefGoogle Scholar
  13. 13.
    V. P. Ipatov, “Ternary sequences with ideal autocorrelation properties”, Radio Eng. Electron. Phys., vol. 24, pp. 75–79, October 1979.Google Scholar
  14. 14.
    V. P. Ipatov, “Contribution to the theory of sequences with perfect periodic autocorrelation properties”, Radio Eng. Electron. Phys., vol. 25, pp. 31–34, April 1980.Google Scholar
  15. 15.
    D. A. Shedd and D. V. Sarwate, “Construction of sequences with good correlation properties”, IEEE Transactions on Information Theory, vol. 25, no. 1, pp. 94–97, January 1979.CrossRefGoogle Scholar
  16. 16.
    T. Hoholdt and J. Justesen, “Ternary sequences with perfect periodic autocorrelation”, IEEE Trans. on IT, vol. 29, no. 4, pp. 597–600, July 1983.Google Scholar
  17. 17.
    L. Bomer and M. Antweiler, “New perfect threelevel and threephase sequences”, in IEEE Int. Symp. Inform. Theory, Budapest, Hungary, June 24–28 1991, p. 280.Google Scholar
  18. 18.
    P. Z. Fan and M. Darnell, “Maximal length sequences over Gaussian integers”, Electron. Lett., vol. 30, no. 16, pp. 1286–1287, August 1994.CrossRefGoogle Scholar
  19. 19.
    M. Darnell, P. Z. Fan, and F. Jin, “New classes of perfect sequences derived from m-sequences”, 1995 IEEE International Symposium on Information Theory, Whistler, Canada, Sept 17–22 1994.Google Scholar
  20. 20.
    R. C. Heimiller, “Phase shift pulse codes with good periodic correlation properties”, IRE Trans. on IT, vol. IT-7, pp. 254–257, 1961.Google Scholar
  21. 21.
    R. L. Frank and S. A. Zadoff, “Phase shift pulse codes with good periodic correlation properties”, IRE Trans. on Information Theory, vol. IT-8, pp. 381–382, October 1962.CrossRefGoogle Scholar
  22. 22.
    R. L. Frank, “Polyphase codes with good nonperiodic correlation properties”, IEEE Trans. on Information Theory, vol. IT-9, pp. 43–45, January 1963.CrossRefGoogle Scholar
  23. 23.
    R. C. Heimiller, “Author's comment”, IRE Trans. on IT, vol. IT-8, pp. 382, Oct. 1962.Google Scholar
  24. 24.
    D. C. Chu, “Polyphase codes with good periodic correlation properties”, IEEE Trans. on Information Theory, vol. IT-18, pp. 531–533, July 1972.CrossRefGoogle Scholar
  25. 25.
    R. L. Frank, “Comments on Polyphase codes with good correlation properties”, IEEE Trans. on Information Theory, vol. IT-19, pp. 244, March 1973.CrossRefGoogle Scholar
  26. 26.
    B. M. Popović, “Generalized chirp-like polyphase sequences with optimum correlation properties”, IEEE Trans. on Information Theory, vol. IT-38, no. 4, pp. 1406–1409, July 1992.CrossRefGoogle Scholar
  27. 27.
    W. O. Alltop, “Complex sequences with low periodic correlations”, IEEE Trans. Inform. Theory, vol. IT-26, no. 3, pp. 350–354, May 1980.CrossRefGoogle Scholar
  28. 28.
    V. P. Ipatov, “Multiphase sequences spectrums”, Izvestiya VUZ. Radioelektronika (Radioelectronics and Communications Systems), vol. 22, no. 9, pp. 80–82, 1979.Google Scholar
  29. 29.
    H. Chung and P. V. Kumar, “A new general construction for generalized bent functions”, IEEE Trans. on Information Theory, vol. IT-35, no. 1, pp. 206–209, Jan. 1989.CrossRefGoogle Scholar
  30. 30.
    P.V. Kumar, R. A. Scholtz, and L. R. Welch, “Generalized bent functions and their properties”, J. Combinat. Theory, series A, vol. 40, no. 1, pp. 90–107, 1985.Google Scholar
  31. 31.
    B. L. Lewis and F. F. Kretschmer, “Linear frequency modulation derived polyphase pulse compression”, IEEE Trans. on AES, vol. AES-18, no. 5, pp. 637–641, Sept. 1982.Google Scholar
  32. 32.
    B. M. Popović, “Efficient matched filter for the generalized chirp-like polyphase sequences”, IEEE Trans. on Aerospace and Electronic Systems, vol. 30, no. 3, pp. 769–777, July 1994.CrossRefGoogle Scholar
  33. 33.
    N. Zhang and S. W. Golomb, “Polyphase sequence with low autocorrelations”, IEEE Trans. on Information Theory, vol. IT-39, pp. 1085–1089, May 1993.CrossRefGoogle Scholar
  34. 34.
    P. Z. Fan, M. Darnell, and B. Honary, “Crosscorrelations of frank sequences and chu sequences”, Electron. Lett., vol. 30, no. 6, pp. 477–478, March 1994.CrossRefGoogle Scholar
  35. 35.
    E. M. Gabidulin, “Non-binary sequences with the perfect periodic auto-correlation and with optimal periodic cross-correlation”, in Proc. IEEE Int. Symp. Inform. Theory, San Antonio, USA, January 1993, p. 412.Google Scholar
  36. 36.
    W. H. Mow, “A unified construction of perfect polyphase sequences”, in Proc. IEEE Int. Symp. Inform. Theory, Whistler, B.C. Canada, Sept 17–22 1995.Google Scholar
  37. 37.
    E. M. Gabidulin, “Partial classification of sequences with perfect auto-correlation and bent functions”, in Proc. IEEE Int. Symp. Inform. Theory, Whistler, B.C. Canada, Sept 17–22 1995.Google Scholar
  38. 38.
    B. M. Popović, “GCL polyphase sequences with minimum alphabets”, Electron. Lett., vol. 30, no. 2, pp. 106–107, January 1994.CrossRefGoogle Scholar
  39. 39.
    D. Calabro and J.K. Wolf, “On the synthesis of two-dimensional arrays with desirable correlation properties”, Information and Control, vol. 11, pp. 537–560, 1968.CrossRefGoogle Scholar
  40. 40.
    L. Bömer and M. Antweiler, “Two-dimensional perfect binary arrays with 64 elements”, IEEE Trans. on IT, vol. IT-36, pp. 411–414, 1990.Google Scholar
  41. 41.
    H. D. Lüke, “Perfect ternary arrays”, IEEE Trans. on Information Theory, vol. IT-36, no. 3, pp. 696–705, May 1990.Google Scholar
  42. 42.
    L. Bömer and M. Antweiler, “Perfect N-phase sequences and arrays”, IEEE Journal on Selected Areas in Communications, vol. 10, pp. 782–789, 1992.CrossRefGoogle Scholar
  43. 43.
    E. M. Gabidulin, “There are only finitely many perfect auto-correlation polyphase sequences of prime length”, in Proc. IEEE Int. Symp. Inform. Theory, Trondheim, Norway, June 27–July 1 1994, p. 282.Google Scholar
  44. 44.
    P. Z. Fan and M. Darnell, “Aperiodic autocorrelation of Frank sequences”, IEE Proceedings on Communications, vol. 142, no. 4, pp. 210–215, 1995.CrossRefGoogle Scholar
  45. 45.
    E. M. Gabidulin, P. Z. Fan, and M. Darnell, “On the autocorrelation of Golomb sequences”, IEE Proceedings on Communications, vol. 143, no. 1, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. Z. Fan
    • 1
  • M. Darnell
    • 1
  1. 1.Dept of Electronic & Electrical EngineeringLeeds UniversityLeedsUK

Personalised recommendations