Constructions for variable-length error-correcting codes

  • Victor Buttigieg
  • Patrick G. Farrell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1025)


Two construction techniques for variable-length error-correcting (VLEC) codes are given. The first uses fixed-length linear codes and anticodes to build new VLEC codes, whereas the second uses a heuristic algorithm to perform a computer search for good VLEC codes. VLEC codes may be used for combined source and channel coding. It is shown that over an additive white Gaussian noise channel the codes so constructed can perform better than standard cascaded source and channel codes with similar parameters.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.A. Huffman, “A method for the construction of minimum redundancy codes”, Proc. IRE, Vol. 40, pp. 1098–1101, Sep. 1952.Google Scholar
  2. 2.
    J.C. Maxted & J.P. Robinson, “Error recovery for variable length codes”, IEEE Trans. Inform. Theory, Vol. IT-31, No. 6, pp. 794–801, Nov. 1985.CrossRefGoogle Scholar
  3. 3.
    V. Buttigieg & P.G. Farrell, “A maximum a-posteriori (MAP) decoding algorithm for variable-length error-correcting codes”, Codes and cyphers: Cryptography and coding IV, Essex, England, The Institute of Mathematics and its Application, pp. 103–119, 1995.Google Scholar
  4. 4.
    V. Buttigieg & P.G. Farrell, “On variable-length error-correcting codes”, Proc. 1994 IEEE ISIT, Trondheim, Norway, p. 507, 27 Jun.–1 Jul. 1994b.Google Scholar
  5. 5.
    V. Buttigieg & P.G. Farrell, “Sequential decoding of variable-length error-correcting codes”, Proc. Eurocode 94, Côte d'Or, France, pp. 93–98, 24–28 Oct. 1994c.Google Scholar
  6. 6.
    V. Buttigieg, “Variable-length error-correcting codes”, Ph.D. Thesis, University of Manchester, England, 1995.Google Scholar
  7. 7.
    P.G. Farrell & A. Farrag, “Further properties of linear binary anticodes”, Electron. Lett., Vol. 10, No. 16, p. 340, Aug. 1974.Google Scholar
  8. 8.
    P.G. Farrell, “An introduction to anticodes”, Internal Report, Kent, England, The University of Ken at Canterbury, 1977.Google Scholar
  9. 9.
    M.A. Bernard & B.D. Sharma, “Variable length perfect codes”, J. Inform. & Optimization Sciences, Vol. 13, No. 1, pp. 143–151, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Victor Buttigieg
    • 1
  • Patrick G. Farrell
    • 2
  1. 1.Dept. of Communications and Computer EngineeringUniversity of MaltaMsidaMalta
  2. 2.The Manchester School of Engineering, Simon BuildingThe University of ManchesterManchesterUK

Personalised recommendations