A note on the hash function of Tillich and Zémor

  • Willi Geiselmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1025)


The hash function based on the group SL2(\(F_{2^n }\)) [4] is studied by embedding the generators of SL2(\(F_{2^n }\)) into finite fields. Using this embeddings, clashing sequences can be found by calculationg discrete logarithms in the field \(F_{2^n }\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Charnes, J.Pieprzyk; Attacking the SL2 Hashing Scheme; Proceedings of ASIA-CRYPT '94, J.Pieprzyk (Ed.), LNCS, Springer, pp. 268–276.Google Scholar
  2. 2.
    W. Geiselmann, D. Gollmann; Self-Dual Basis in \(F_{q^n }\); Designs, Codes and Cryptography, Vol. 3, No. 4, pp. 333–345, 1993.Google Scholar
  3. 3.
    R. Lidl, H. Niederreiter; Introduction to Finite Fields and Their Applications; Cambridge University Press, 1986.Google Scholar
  4. 4.
    J-P. Tillich, G.Zémor; Hashing with 263–02; Proceedings of CRYPTO '94, Y. Desmet (Ed.), LNCS Vol 839, Springer, pp. 40–49, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Willi Geiselmann
    • 1
  1. 1.Department of Computer Science, Royal HollowayUniversity of LondonEghamUK

Personalised recommendations