Advertisement

On-line secret sharing

  • Christian Cachin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1025)

Abstract

We propose a new construction for computationally secure secret sharing schemes with general access structures where all shares are as short as the secret. Our scheme provides the capability to share multiple secrets and to dynamically add participants on-line, without having to re-distribute new shares secretly to the current participants. These capabilities are gained by storing additional authentic (but not secret) information at a publicly accessible location.

Keywords

Secret Sharing Access Structure Bulletin Board Secret Sharing Scheme Threshold Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Benaloh, and J. Leichter, Generalized secret sharing and monotone functions, in Advances in Cryptology — CRYPTO '88, S. Goldwasser, ed., vol. 403 of Lecture Notes in Computer Science, Springer-Verlag, 1990, pp. 27–35.Google Scholar
  2. 2.
    B. Blakley, G. R. Blakley, A. H. Chan, and J. L. Massey, Threshold schemes with disenrollment, in Advances in Cryptology — CRYPTO '92, E. F. Brickell, ed., vol. 740 of Lecture Notes in Computer Science, Springer-Verlag, 1993, pp. 540–548.Google Scholar
  3. 3.
    C. Blundo, A. Cresti, A. De Santis, and U. Vaccaro, Fully dynamic secret sharing schemes, in Advances in Cryptology — CRYPTO '93, D. R. Stinson, ed., vol. 773 of Lecture Notes in Computer Science, Springer-Verlag, 1994, pp. 110–125.Google Scholar
  4. 4.
    C. Blundo, A. De Santis, G. Di Crescenzo, A. G. Gaggia, and U. Vaccaro, Multi-secret sharing schemes, in Advances in Cryptology — CRYPTO '94, Y. G. Desmedt, ed., vol. 839 of Lecture Notes in Computer Science, Springer-Verlag, 1994, pp. 150–163.Google Scholar
  5. 5.
    R. M. Capocelli, A. D. Santis, L. Gargano, and U. Vaccaro, On the size of shares for secret sharing schemes, in Advances in Cryptology — CRYPTO '91, J. Feigenbaum, ed., vol. 576 of Lecture Notes in Computer Science, Springer-Verlag, 1992, pp. 101–113.Google Scholar
  6. 6.
    L. Csirmaz, The size of a share must be large, in Advances in Cryptology — EUROCRYPT '94, A. De Santis, ed., vol. 950 of Lecture Notes in Computer Science, Springer-Verlag, 1995, pp. 13–22.Google Scholar
  7. 7.
    D. E. Denning and M. Smid, Key escrowing today, IEEE Communications Magazine, 32 (1994), pp. 58–68.CrossRefGoogle Scholar
  8. 8.
    O. Goldreich, S. Micali, and A. Wigderson, How to play any mental game or a completeness theorem for protocols with honest majority, in Proc. 19th ACM Symposium on Theory of Computing (STOC), 1987, pp. 218–229.Google Scholar
  9. 9.
    M. Ito, A. Saito, and T. Nishizeki, Secret sharing scheme realizing general access structure, in Proceedings of IEEE Globecom '87, 1987, pp. 99–102.Google Scholar
  10. 10.
    H. Krawczyk, Secret sharing made short, in Advances in Cryptology — CRYPTO '93, D. R. Stinson, ed., vol. 773 of Lecture Notes in Computer Science, Springer-Verlag, 1994, pp. 136–146.Google Scholar
  11. 11.
    L. Lamport, Password authentication with insecure communication, Comm. ACM, 24 (1981).Google Scholar
  12. 12.
    S. Micali, Fair public-key cryptosystems, in Advances in Cryptology — CRYPTO '92, E. F. Brickell, ed., vol. 740 of Lecture Notes in Computer Science, Springer-Verlag, 1993, pp. 113–138.Google Scholar
  13. 13.
    M. O. Rabin, Efficient dispersal of information for security, load balancing, and fault tolerance, J. Assoc. Comput. Mach., 36 (1989), pp. 335–348.Google Scholar
  14. 14.
    A. Shamir, How to share a secret, Comm. ACM, 22 (1979), pp. 612–613.CrossRefGoogle Scholar
  15. 15.
    G. J. Simmons, An introduction to shared secret and/or shared control schemes and their application, in Contemporary Cryptology: The Science of Information Integrity, G. J. Simmons, ed., IEEE Press, 1991, pp. 441–497.Google Scholar
  16. 16.
    D. R. Stinson, An explication of secret sharing schemes, Designs, Codes and Cryptography, 2 (1992), pp. 357–390.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Christian Cachin
    • 1
  1. 1.Institute for Theoretical Computer ScienceETH ZürichZürichSwitzerland

Personalised recommendations