How traveling salespersons prove their identity

  • Stefan Lucks
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1025)


In this paper a new identification protocol is proposed. Its security is based on the Exact Traveling Salesperson Problem (XTSP). The XTSP is a close relative of the famous TSP and consists of finding a Hamiltonian circuit of a given length, given a complete directed graph and the distances between all vertices. Thus, the set of tools for use in public-key cryptography is enlarged.


Hash Function Identification Scheme Hamiltonian Cycle Hamiltonian Circuit Travel Salesperson Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. B. Damgård, A Design Principle for Hash Functions, in: Proc Crypto '89, Springer LNCS 435, 416–427.Google Scholar
  2. 2.
    M. Girault, J. Stern, On the length of cryptographic hash-values used in identification schemes, in: Proc. Crypto '94, Springer LNCS 839, 202–215.Google Scholar
  3. 3.
    M. Jünger, G. Reinelt, S. Thienel, Provably good solutions for the traveling salesman problem, in: Zeitschrift für Operations Research 40 (1994), 183–217.Google Scholar
  4. 4.
    E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, D. B. Shmoys (eds.), The Traveling Salesman Problem, Wiley, 1985.Google Scholar
  5. 5.
    S. Lucks, How to Exploit the Intractability of Exact TSP for Cryptography, to appear in: Proc. Fast Software Encryption (1994), Springer LNCS.Google Scholar
  6. 6.
    R. C. Merkle, A Certified Digital Signature (That Antique Paper from 1979), in: Crypto '89, Springer LNCS 435, 218–238.Google Scholar
  7. 7.
    M. Padberg, G. Rinaldi, A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems, in: Siam Review 33, No. 1 (1991), 60–100.CrossRefGoogle Scholar
  8. 8.
    J. Patarin, P. Chauvaud, Improved Algorithms for the Permuted Kernel Problem, in: Proc. Crypto '93, Springer LNCS 773, 391–402.Google Scholar
  9. 9.
    D. Pointcheval, A New Identification Scheme Based on the Perceptrons Problem, in: Proc. Eurocrypt '95, Springer LNCS 921, 319–328.Google Scholar
  10. 10.
    A. Shamir, An Identification Scheme based on Permuted Kernels, in: Proc. Crypto '89, Springer LNCS 435, 606–609.Google Scholar
  11. 11.
    J. Stern, A new identification scheme based on syndrome decoding, in: Proc. Crypto '93, Springer LNCS 773, 13–20.Google Scholar
  12. 12.
    J. Stern, Designing Identification Schemes with Keys of Short Size, in: Proc. Crypto '94, Springer LNCS 839, 164–173.Google Scholar
  13. 13.
    S. Thienel, private communication, July 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Stefan Lucks
    • 1
  1. 1.Institut für Numerische und Angewandte MathematikGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations