Quantum cryptography: Protecting our future networks with quantum mechanics

  • Simon J. D. Phoenix
  • Paul D. Townsend
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1025)


In a series of recent experiments a radical new technique has been demonstrated that could have far-reaching consequences for the provision of security on our communications networks. This technique, known as quantum cryptography, is the result of a synthesis of ideas from fundamental quantum physics and classical encryption. We review the developments in this rapidly-growing field.


Time Slot Optical Network Quantum Cryptography Bell Inequality Dark Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, “Experimental Quantum Cryptography”, Journal of Cryptology, 5 3–28 (1992).CrossRefGoogle Scholar
  2. 2.
    S. Wiesner, “Conjugate Coding”, Sigact News, 15 78–88 (1983), original manuscript written circa 1970.CrossRefGoogle Scholar
  3. 3.
    P. D. Townsend, J. G. Rarity and P. R. Tapster, “Single-Photon Interference in a 10km Long Optical Fibre Interferometer”, Electronics Letters, 29 634–635 (1993); P. D. Townsend, J. G. Rarity and P. R. Tapster, “Enhanced Single-Photon Fringe Visibility in a 10km Long Prototype Quantum Cryptography Channel”, Electronics Letters, 29 1292–1293 (1993); P. D Townsend and I. Thompson, “A Quantum Key Distribution Channel Based on Optical Fibre”, Journal of Modern Optics, 41 2425–2434 (1994).Google Scholar
  4. 4.
    A. Muller, J. Breguet and N. Gisin, “Experimental Demonstration of Quantum Cryptography using Polarised Photons in Optical Fibre over more than 1km”, Europhysics Letters, 23 383–388 (1993).Google Scholar
  5. 5.
    P. D. Townsend, “Secure Key Distribution System Based on Quantum Cryptography”, Electronics Letters, 30 809–810 (1994); C. Marand and P. D. Townsend, “Quantum Key Distribution Over Distances as long as 30km”, Optics Letters, 20 1695–1697 (1995).CrossRefGoogle Scholar
  6. 6.
    J. D. Franson and H. Ilves, “Quantum Cryptography using Optical Fibres”, Applied Optics, 33 2949–2954 (1994); J. D. Franson and H. Ilves, “Quantum Cryptography using Polarisation Feedback”, Journal of Modern Optics, 41 2391–2396 (1994).Google Scholar
  7. 7.
    R. J. Hughes, G. G. Luther, G. L. Morgan and C. Simmons “Quantum Cryptography over 14km of Installed Optical Fibre”, to be published in “Proceedings of the Seventh Rochester Conference on Coherence and Quantum Optics”.Google Scholar
  8. 8.
    C. H. Bennett and G. Brassard, “Quantum Cryptography: Public-Key Distribution and Coin Tossing”, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 175–179 (1984).Google Scholar
  9. 9.
    W. K. Wootters and W. H. Zurek, “A Single Quantum Cannot be Cloned”, Nature, 299 802–803 (1982).CrossRefGoogle Scholar
  10. 10.
    S. J. D. Phoenix, “Quantum Cryptography without Conjugate Coding”, Physical Review A, 48 96–102 (1993).PubMedGoogle Scholar
  11. 11.
    C. H. Bennett, G. Brassard and J.-M. Robert, “Privacy Amplification by Public Discussion”, SIAM Journal on Computing, 17 210–229 (1988). The procedure is also outlined in reference [1]; C. H. Bennett, G. Brassard, C. Crepeau and U. M. Maurer, “Generalised Privacy Amplification”, IEEE Transactions on Information Theory, in press.CrossRefGoogle Scholar
  12. 12.
    C. H. Bennett, “Quantum Cryptography Using Any Two Non-Orthogonal States”, Physical Review Letters, 68 3121–3124 (1992).PubMedMathSciNetGoogle Scholar
  13. 13.
    S. M. Barnett and S. J. D. Phoenix, “Information-Theoretic Limits to Quantum Cryptography”, Physical Review A, 48 R5–R8 (1993); S. M. Barnett, B. Huttner and S. J. D. Phoenix, “Eavesdropping Strategies and Rejected-Data Protocols in Quantum Cryptography”, Journal of Modern Optics, 40 2501–2513 (1993).PubMedGoogle Scholar
  14. 14.
    A. K. Ekert, “Quantum Cryptography Based on Bell's Theorem”, Physical Review Letters, 67 661–663 (1991).PubMedGoogle Scholar
  15. 15.
    J. S. Bell, “On the Einstein-Podolsky-Rosen Paradox”, Physics, 1 195–200 (1964).Google Scholar
  16. 16.
    S. M. Barnett and S. J. D. Phoenix, “Bell's Inequality and Rejected-Data Protocols for Quantum Cryptography”, Journal of Modern Optics, 40 1443–1448 (1993).Google Scholar
  17. 17.
    P. D. Townsend, S. J. D. Phoenix, K. J. Blow and S. M. Barnett, “Design of Quantum Cryptography Systems for Passive Optical Networks”, Electronics Letters, 30 1875–1877 (1994); S. J. D. Phoenix, S. M. Barnett, P. D. Townsend and K. J. Blow, “Multi-User Quantum Cryptography on Optical Networks”, Journal of Modern Optics, 42 1155–1163 (1995).CrossRefGoogle Scholar
  18. 18.
    P. Shor, “Algorithms for Quantum Computation: Discrete Logarithms and Factoring” in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, 1994) pp. 124–134.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Simon J. D. Phoenix
    • 1
  • Paul D. Townsend
    • 1
  1. 1.Martlesham HeathBT LaboratoriesIpswichUK

Personalised recommendations