Skip to main content

Partition coefficients of acyclic graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1017))

Included in the following conference series:

  • 170 Accesses

Abstract

We develop the concept of a “closure space”; which appears with different names in many aspects of graph theory. We show that acyclic graphs can be almost characterized by the partition coefficients of their associated closure spaces. The resulting nearly total ordering of all acyclic graphs (or partial orders) provides an effective isomorphism filter and the basis for efficient retrieval in secondary storage. Closure spaces and their partition coefficients provide the theoretical basis for a new computer system being developed to investigate the properties of arbitrary acyclic graphs and partial orders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. D. Birkhoff and D. Lewis. Chromatic polynomials. Trans. Amer. Math. Soc., 60:355–451, 1946.

    Google Scholar 

  2. Richard A. Brualdi, Hyung Chan Jung, and William T. Trotter, Jr. On the poset of all posets on n elements. Discrete Applied Mathematics, 1994. To appear.

    Google Scholar 

  3. R.F. Churchhouse. Congruence properties of the binary partition function. Proc. Cambridge Phil. Soc., 66(2):371–376, 1969.

    Google Scholar 

  4. R.F. Churchhouse. Binary partitions. In A.O.L. Atkin and B.J. Birch, editors, Computers in Number Theory, pages 397–400. Academic Press, 1971.

    Google Scholar 

  5. Joseph C. Culberson and Gregory J. E. Rawlins. New results from an algorithm for counting posets. Order, 7:361–374, 1991.

    Google Scholar 

  6. Dragos Cvetkovic, Peter Rowlinson, and Slobodan Simic. A study of eigenspaces of graphs. Linear Algebra and Its Applic., 182:45–66, Mar. 1993.

    Google Scholar 

  7. Brenda L. Dietrich. Matroids and antimatroids — a survey. Discrete Mathematics, 78:223–237, 1989.

    Google Scholar 

  8. Feodor F. Dragan, Falk Nicolai, and Andreas Brandstadt. Convexisty and handfree graphs. Technical Report SM-DU-290, Gerhard-Mercator Univ., Duisburg, Germany, May 1995.

    Google Scholar 

  9. Paul H. Edelman. Meet-distributive lattices and the anti-exchange closure. Algebra Universalis, 10(3):290–299, 1980.

    Google Scholar 

  10. Paul H. Edelman and Robert E. Jamison. The theory of convex geometries. Geometriae Dedicata, 19(3):247–270, Dec. 1985.

    Google Scholar 

  11. Martin Farber and Robert E. Jamison. Convexity in graphs and hypergraphs. SIAM J. Algebra and Discrete Methods, 7(3):433–444, July 1986.

    Google Scholar 

  12. George Gratzer. General Lattice Theory. Academic Press, 1978.

    Google Scholar 

  13. Frank Harary. Graph Theory. Addison-Wesley, 1969.

    Google Scholar 

  14. Robert E. Jamison-Waldner. Partition numbers for trees and ordered sets. Pacific J. of Math., 96(1):115–140, Sept. 1981.

    Google Scholar 

  15. Bernhard Korte, Laszlo Lovasz, and Rainer Schrader. Greedoids. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  16. K. Mahler. On a special functional equation. J. London Math. Soc., 15(58):115–123, Apr. 1940.

    Google Scholar 

  17. John L. Pfaltz. Convexity in directed graphs. J. of Comb. Theory, 10(2):143–162, Apr. 1971.

    Google Scholar 

  18. John L. Pfaltz. Computer Data Structures. McGraw-Hill, Feb. 1977.

    Google Scholar 

  19. John L. Pfaltz. Partitions of 2n. Technical Report TR CS-94-22, University of Virginia, June 1994.

    Google Scholar 

  20. John L. Pfaltz. Closure lattices. Discrete Mathematics, 1995. (to appear), preprint available as Tech. Rpt. CS-94-02 through home page http://uvacs.cs.virginia.edu/.

    Google Scholar 

  21. John L. Pfaltz. Partially ordering the subsets of a closure space. ORDER, 1995. (submitted).

    Google Scholar 

  22. A. J. Schwenk. Computing the characteristic polynomial of a graph. In R. Bari and F. Harary, editors, Graphs and Combinatorics, pages 153–172. Springer Verlag, 1974.

    Google Scholar 

  23. N. J. A. Sloane. A Handbook of Integer Sequences. Academic Press, 1973. On-line version at 'sequences@research.att.com'.

    Google Scholar 

  24. Richard P. Stanley. Enumerative Combinatorics, Vol 1. Wadsworth & Brooks/Cole, 1986.

    Google Scholar 

  25. W. T. Tutte. Introduction to the Theory of Matroids. Amer. Elsevier, 1971.

    Google Scholar 

  26. D.J.A. Welsh. Matroid Theory. Academic Press, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manfred Nagl

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pfaltz, J.L. (1995). Partition coefficients of acyclic graphs. In: Nagl, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 1995. Lecture Notes in Computer Science, vol 1017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60618-1_85

Download citation

  • DOI: https://doi.org/10.1007/3-540-60618-1_85

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60618-5

  • Online ISBN: 978-3-540-48487-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics