Efficient parallel modular decomposition (extended abstract)

  • Elias Dahlhaus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1017)


Modular decomposition plays an important role in the recognition of comparability graphs and permutation graphs [12]. We prove that modular decomposition can be done in in polylogarithmic time with a linear processor bound.


Parallel algorithms graph theory graph algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Cole, Parallel Merge Sort, 27. IEEE-FOGS (1986), pp. 511–516.Google Scholar
  2. 2.
    R. Cole, U. Vishkin, Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking, Information and Control 70 (1986), pp. 32–53.Google Scholar
  3. 3.
    D. Cornell, H. Lerchs, L. Burlingham, Complement Reducible Graphs, Discrete Applied Mathematics 3 (1981), pp. 163–174.CrossRefGoogle Scholar
  4. 4.
    A. Cournier, M. Habib, A New Linear Time Algorithm for Modular Decomposition, Trees in Algebra and Programming, LNCS 787 (1994), pp. 68–84.Google Scholar
  5. 5.
    E. Dahlhaus, Efficient Parallel Recognition Algorithms of Cographs and Distance Hereditary Graphs, Discrete Applied Mathematics 57 (1995), pp. 29–44.Google Scholar
  6. 6.
    A. Ehrenfeucht, H. Gabow, R. McConnell, S. Sullyvan, An O(n2) Divide-and-Conquer Algorithms for the Prime Tree Decomposition of Two-Structures and Modular Decomposition of Graphs, Journal of Algorithms, 16 (1994), pp. 283–294.Google Scholar
  7. 7.
    X. He, Parallel Algorithms for Cograph Recognition with Applications, Journal of Algorithms 15 (1993), pp. 284–313.Google Scholar
  8. 8.
    P. Klein, Efficient Parallel Algorithms for Chordal Graphs, 29th IEEE-FOCS (1988), pp. 150–161.Google Scholar
  9. 9.
    R. McConnell, J. Spinrad, Linear-Time Modular Decomposition and Efficient Transitive Orientation of Comparability Graphs, Fifth Annual ACM-SIAM Symposium of Discrete Algorithms (1994), pp. 536–545.Google Scholar
  10. 10.
    J.H. Muller, J. Spinrad, Incremental Modular Decomposition, Journal of the ACM, 36 (1989), pp. 1–19.Google Scholar
  11. 11.
    B. Schieber, U. Vishkin, On Finding Lowest Common Ancestors: Simplification and Parallelization, SIAM Journal on Computing 17 (1988), pp. 1253–1262.Google Scholar
  12. 12.
    J. Spinrad, On Comparability and Permutation Graphs, SIAM-Journal on Computing, 14 (1985), pp. 658–670.MathSciNetGoogle Scholar
  13. 13.
    Y. Shiloach, U. Vishkin, An O(log n) Parallel Connectivity Algorithm, Journal of Algorithms, 3 (1982), pp. 57–67.CrossRefGoogle Scholar
  14. 14.
    J. Spinrad, P4-Trees and Substitution Decomposition, Discrete Applied Mathematics, 39 (1992), pp. 263–291.Google Scholar
  15. 15.
    R. Tarjan, U. Vishkin, Finding biconnected components and computing tree functions in logarithmic parallel time, SIAM Journal on Computing 14 (1985), pp. 862–874.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Elias Dahlhaus
    • 1
  1. 1.Basser Dept. of Computer ScienceUniversity of SydneyAustralia

Personalised recommendations