Skip to main content

High internal phase emulsions (HIPEs) — Structure, properties and use in polymer preparation

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 126))

Abstract

High internal phase emulsions (HIPEs) are concentrated systems possessing a large volume of internal, or dispersed phase. The volume fraction is above 0.74, resulting in deformation of the dispersed phase droplets into polyhedra, which are separated by thin films of continuous phase. Their structure, which is analogous to a conventional gas-liquid foam of low liquid content, gives rise to a number of peculiar and fascinating properties including high viscosities and viscoelastic rheological behaviour. Like dilute emulsions, HIPEs are both kinetically and thermodynamically unstable; nevertheless, it is possible to prepare metastable systems which show no change in properties or appearance over long periods of time.

Polymer materials can easily be prepared from HIPEs if one or the other (or both) phases of the emulsion contain monomeric species. This process yields a range of products with widely differing properties. Additionally, as the concentrated emulsion acts as a scaffold or template, the microstructure of the resultant material is determined by the emulsion structure immediately prior to polymerisation.

In this review, the structure, properties, stability and applications of highly concentrated emulsions will be discussed in the first section. Following this, the use of HIPEs to generate novel polymer materials will be the focus of the second part.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4 References

  1. Lissant KJ (ed) (1974) Emulsions and Emulsion Technology, Part 1 Marcel Dekker, New York, Chap. 1

    Google Scholar 

  2. Ostwald W (1910) Kolloid Z 6: 103; ibid (1910) 7: 64

    Google Scholar 

  3. Lissant KJ (1966) J Coll Interf Sci 22: 462

    Google Scholar 

  4. Lissant KJ (1970) J Soc Cosmetic Chem 21: 141

    Google Scholar 

  5. Lissant KJ, Mayhan KG (1973) J coll Interf Sci 42: 201

    Google Scholar 

  6. Lissant KJ, Pearce BW, Wu SH, Mayhan KG (1974) J Coll Interf Sci 47: 416

    Google Scholar 

  7. Princen HM (1988) Langmuir 4: 486

    Google Scholar 

  8. Ravey J-C, Stébé MJ (1990) Progr Coll Polym Sci 82: 218

    Google Scholar 

  9. Solans C, Dominguez JG, Parra JL, Heuser J, Friberg SE (1992) Coll Polym Sci 266: 570

    Google Scholar 

  10. Pons R, Solans C, Stébé MJ, Erra P, Ravey J-C (1992) Prog Coll Polym Sci 89: 110

    Google Scholar 

  11. Kunieda H, Solans C, Shida N, Parra JL (1987) Coll Surf 24: 225

    Google Scholar 

  12. Solans C, Pons R, Zhu S, Davis HT, Evans DF, Nakamura K, Kunieda H (1993) Langmuir 9: 1479

    Google Scholar 

  13. Kunieda H, Yano N, Solans C (1989) Coll Surf 36: 313

    Google Scholar 

  14. Kunieda H, Evans DF, Solans C, Yoshida M (1990) ibid 47: 35

    Google Scholar 

  15. Ebert G, Platz G, Rehage H (1988) Ber Bunsenges Phys Chem 92: 1158

    Google Scholar 

  16. Hoffmann H (1990) Adv Coll Interf Sci 32: 123

    Google Scholar 

  17. Sebba F (1972) J Coll Interf Sci 40: 468

    Google Scholar 

  18. Sebba F (1975) ACS Symp Ser 9: 18

    Google Scholar 

  19. Sebba F (1987) Foams and Biliquid Foams — Aphrons, Wiley, New York

    Google Scholar 

  20. Vincent B (1975) In: Colloid Science Vol.2 (D.H. Everett, ed.), Chemical Society, London

    Google Scholar 

  21. Kizling J, Kronberg B (1990) Coll Surf 50: 131

    Google Scholar 

  22. Sebba F (1979) Coll Polym Sci 257: 392

    Google Scholar 

  23. Bergeron V, Sebba F (1987) Langmuir 3: 857

    Google Scholar 

  24. Sebba F, Chem Ind 1984: 367

    Google Scholar 

  25. Paczynska-Lahne B (1990) Prog Coll Polym Sci 83: 196

    Google Scholar 

  26. Princen HM (1979) J Coll Interf Sci 71: 55

    Google Scholar 

  27. Princen HM (1965) J Coll Interf Sci 20: 156

    Google Scholar 

  28. Ivanov IB, Toshev B (1975) Coll Polym Sci 253: 593

    Google Scholar 

  29. de Feiter JA, Rijnbout JB, Vrij A (1978) J Coll Interf Sci 64: 258

    Google Scholar 

  30. Princen HM, Aronson MP, Moser JC (1980) ibid 75: 246

    Google Scholar 

  31. For a detailed description of collapsed linear and tetrahedral Plateau borders, see the following: Princen HM (1984) Coll Surf 9: 47; Princen HM (1984) ibid 9: 67

    Google Scholar 

  32. Mannegold E (1953) Schaum, p. 83, Chemie und Technik Verlagsgesellschaft, Heidelberg, cited in Ref. 30

    Google Scholar 

  33. Desch CH (1923) Rec Trav Chim 42: 882, cited in: Bikermann JJ (1973) Foams, p. 62, Springer-Verlag, Heidelberg

    Google Scholar 

  34. Ross S (1978) Amer J Phys 46: 513

    Google Scholar 

  35. Ross S, Prest HF (1986) Coll Surf 21: 179

    Google Scholar 

  36. Princen HM, Levinson P (1987) J Coll Interf Sci 120: 172

    Google Scholar 

  37. Princen HM, Kiss AD (1987) Langmuir 3: 36

    Google Scholar 

  38. Reinelt DA, Kraynik AM (1993) ibid 159: 460

    Google Scholar 

  39. Kann KB (1984) Coll J USSR 46: 397

    Google Scholar 

  40. Kann KB (1985) ibid 47: 744

    Google Scholar 

  41. Weaire D, Pittet N, Hutzler S, Pardal D (1993) Phys Rev Lett 71: 2670

    PubMed  Google Scholar 

  42. Weaire D (1994) Phil Mag Lett 69: 99

    Google Scholar 

  43. Weaire D, Phelan R (1994) ibid 69: 107

    Google Scholar 

  44. Weaire D (1994) New Scientist 142 (1926): 34

    Google Scholar 

  45. Weaire D, Phelan R (1994) Phil Mag Lett 70: 345

    Google Scholar 

  46. Das AK, Ghosh PK (1990) Langmuir 6: 1668

    Google Scholar 

  47. Gregory DP, Unilever Research Laboratory, Port Sunlight, private communication.

    Google Scholar 

  48. Mannheimer RJ (1972) J Coll Interf Sci 40: 370

    Google Scholar 

  49. Mukesh D, Das AK, Ghosh PK (1992) Langmuir 8: 807

    Google Scholar 

  50. Aubert JH, Kraynik AM, Rand PB (1986) Sci Am 254: 58; Heller JP, Kuntamukkula MS (1987) Ind Eng Chem Res 26: 318; Kraynik AM (1988) Ann Rev Fluid Mech 20: 325

    Google Scholar 

  51. Princen HM (1983) J Coll Interf Sci 91: 160

    Google Scholar 

  52. Khan SA, Armstrong RC (1986) J Non-Newtonian Fluid Mech 22: 1

    Google Scholar 

  53. Kraynik AM, Hansen MG (1986) J Rheol 30: 409

    Google Scholar 

  54. Weaire D (1989) Phil Mag Lett 60: 27

    Google Scholar 

  55. Khan SA (1987) Rheol Acta 26: 78

    Google Scholar 

  56. Khan SA, Armstrong RC (1989) J Rheol 33: 881

    Google Scholar 

  57. Princen HM, Kiss AD (1986) J Coll Interf Sci 112: 427

    Google Scholar 

  58. Stamenovic D, Wilson TA (1984) Trans ASME J Appl Mech 51: 229

    Google Scholar 

  59. Derjaguin B (1933) Kolloid Z 64: 1; Derjaguin B, Obuchov E (1934) ibid 68: 243

    Google Scholar 

  60. Stamenovic D (1991) Trans ASME J Appl Mech 58: 288

    Google Scholar 

  61. Budiansky B, Kimmel E (1991) ibid 58: 289

    Google Scholar 

  62. Kraynik AM, Hansen MG (1987) J Rheol 31: 175

    Google Scholar 

  63. Khan SA, Armstrong RC (1987) J Non-Newtonian Fluid Mech 25: 61

    Google Scholar 

  64. Princen HM (1985) J Coll Interf Sci 105: 150

    Google Scholar 

  65. Schwartz LW, Princen HM (1987) ibid 118: 201

    Google Scholar 

  66. Reinelt DA, Kraynik AM (1989) ibid 132: 491

    Google Scholar 

  67. Reinelt DA, Kraynik AM (1990) J Fluid Mech 215: 431

    MathSciNet  Google Scholar 

  68. Weaire D, Kermode JP (1983) Philos Mag B 48: 245

    Google Scholar 

  69. Weaire D, Kermode JP (1984) ibid 50: 379

    Google Scholar 

  70. Weaire D, Rivier N (1984) Contemp Phys 25: 59

    Google Scholar 

  71. Weaire D, Fu TL, Kermode JP (1986) Phil Mag Lett 54: L39

    Google Scholar 

  72. Weaire D, Fu TL (1988) J Rheol 32: 271

    Google Scholar 

  73. Weaire D, Bolton F, Herdtle T, Aref H (1992) Phil Mag Lett 66: 293

    Google Scholar 

  74. Kraynik AM, Reinelt DA, Princen HM (1991) J Rheol 35: 1235

    Google Scholar 

  75. Reinelt DA (1992) J Rheol 37: 1117

    Google Scholar 

  76. Ford RE, Furmidge CGL (1967) J Sci Food Agric 18: 419

    Google Scholar 

  77. Pal R, Rhodes E (1985) J Coll Interf Sci 107: 301

    Google Scholar 

  78. Das AK, Mukesh D, Swayambunathan V, Kotkar DD, Ghosh PK (1992) Langmuir 8: 2427

    Google Scholar 

  79. Otsubo Y, Prud'homme RK (1994) Rheol Acta 33: 101

    Google Scholar 

  80. Solans C, Azemar N, Parra JL (1988) Prog Coll Polym Sci 76: 224

    Google Scholar 

  81. Ebert G, Platz G, Rehage H (1988) Ber Bunsenges Phys Chem 92: 1158

    Google Scholar 

  82. Princen HM, Kiss AD (1989) J Coll Interf Sci 128: 176

    Google Scholar 

  83. Mannheimer RJ (1972) ibid 40: 370

    Google Scholar 

  84. Calvert JR, Nezhati K (1986) Int J Heat Fluid Flow 7: 164

    Google Scholar 

  85. Khan SA, Schnepper CA, Armstrong RC (1988) J Rheol 32: 69

    Google Scholar 

  86. Yoshimura A, Prud'homme RK (1988) ibid 32: 53

    Google Scholar 

  87. Yoshimura A, Prud'homme RK (1988) ibid 32: 575

    Google Scholar 

  88. Pons R, Erra P, Solans C, Ravey J-C, Stébé MJ (1993) J Phys Chem 97: 12320

    Google Scholar 

  89. Otsubo Y, Prud'homme RK (1994) Rheol Acta 33: 29

    Google Scholar 

  90. Aronson MP, Petko MF (1993) J Coll Interf Sci 159: 134

    Google Scholar 

  91. Anklam MR, Ware GG, Prud'homme RK (1994) J Rheol 38: 797

    Google Scholar 

  92. Princen HM (1986) Langmuir 2: 519

    Google Scholar 

  93. Kruglyakov PM, Exerowa DR, Kristov KI (1991) ibid 7: 1846

    Google Scholar 

  94. Princen HM (1987) ibid 3: 36

    Google Scholar 

  95. Bibette J (1991) J Coll Interf Sci 147: 474

    Article  Google Scholar 

  96. Bibette J (1992) Langmuir 8: 3178

    Article  Google Scholar 

  97. Bibette J, Morse DC, Witten TA, Weitz DA (1992) Phys Rev Lett 69: 2439

    Article  PubMed  Google Scholar 

  98. Buzza DMA, Cates ME (1993) Langmuir 9: 2264

    Article  Google Scholar 

  99. Ravey J-C, Stébé MJ (1989) Physica B 156 & 157: 394

    Google Scholar 

  100. Pons R, Ravey J-C, Sauvage S, Stébé MJ, Erra P, Solans C (1993) Coll Surf 76: 171

    Article  Google Scholar 

  101. Balinov B, Söderman O, Ravey J-C (1994) J Phys Chem 98: 393

    Article  Google Scholar 

  102. Rajagopalan V, Solans C, Kunieda H (1994) Coll Polym Sci 272: 1166

    Article  Google Scholar 

  103. Kunieda H, Rajagopalan V, Kimura E, Solans C (1994) Langmuir 10: 2570

    Article  Google Scholar 

  104. Ford RE, Furmidge CGL (1966) J Coll Interf Sci 22: 331

    Article  Google Scholar 

  105. Williams JM (1991) Langmuir 7: 1370

    Article  Google Scholar 

  106. Platz G, Ebert G Viscoelasticity and Anisotropy in Microemulsions In: Polymer Reaction Engineering, Reicher KH, Geiseler W (eds) Hüthig, Heidelberg, 1986, pp.95

    Google Scholar 

  107. Ravey J-C, Stébé MJ, Sauvage S (1994) J Chim Phys 91: 259

    Google Scholar 

  108. Chen HH, Ruckenstein E (1991) J Coll Interf Sci 145: 260

    Article  Google Scholar 

  109. Ruckenstein E, Ebert G, Platz G (1989) ibid 133: 432

    Google Scholar 

  110. Chen HH, Ruckenstein E (1990) ibid 138: 473

    Article  Google Scholar 

  111. Princen HM (1990) ibid 134: 188

    Article  Google Scholar 

  112. Ganguly S, Krishna Mohan V, Jyothi Bhasu VC, Mathews E, Adiseshaiah KS, Kumar AS (1992) Coll Surf 65: 243

    Article  Google Scholar 

  113. Rajagopalan V, Solans C, Kunieda H (1994) Coll Polym Sci 272: 1166

    Article  Google Scholar 

  114. Aronson MP, Ananthapadmanabhan K, Petko MF, Palatini DJ (1994) Coll Surf 85: 199

    Article  Google Scholar 

  115. Babak VG (1994) ibid 85: 279

    Article  Google Scholar 

  116. Periard J, Banderet A, Riess G (1970) Polym Lett 8: 109

    Article  Google Scholar 

  117. Periard J, Riess G, Neyer-Gomez MJ (1973) Eur Polym J 9: 687

    Article  Google Scholar 

  118. Riess G, Periard J, Banderet A Emulsifying Effect of Block & Graft Copolymers — Oil in Oil Emulsions In: G. E. Molau (ed) Colloidal and Morphological Behaviour of Block and Graft Copolymers (Proceedings of an American Chemical Society Symposium held at Chicago, Illinois, Sep. 13, 1970)

    Google Scholar 

  119. Riess G (1985) Makromol Chem Suppl 13: 157

    Article  Google Scholar 

  120. Sharma MK (1975) J Coll Interf Sci 53: 340; Curr Sci (1975) 44: 770; ibid (1977) 46: 131; Acta Scien Ind (1977) 3: 139; Sci Cult (1977) 43: 456; Indian J Chem Sect A (1977) 15A: 644; Prog Coll Polym Sci (1978) 63: 75; ibid (1978) 63: 90

    Article  Google Scholar 

  121. Sharma MK (1978) Prog Coll Polym Sci 63: 87; Curr Sci (1977) 46: 601; Sci Cult (1978) 44: 120; Indian J Chem Sect A (1977) 15A: 684; ibid (1978) 16A: 71

    Google Scholar 

  122. Gautier M, Rico I, Ahmad-Zadeh Samii A, de Savignac A, Latter A (1986) J Coll Interf Sci 112: 484; Bergenstähl B, Jönsson A, Sjöblum J, Stenius P, Wärnheim T (1987) Prog Coll Polym Sci 74: 108; Auvray X, Petipas C, Anthore R, Rico I, Lattes A, Ahmad-Zadeh Samii A, de Savignac A (1987) Coll Polym Sci 265: 925; Martino A, Kaler EW (1990) J Phys Chem 94: 1627; Friberg SE, Yang C-C, Gourbran R, Partch RE (1991) Langmuir 7: 1103; Dörfler H-D, Swaboda C (1993) Coll Polym Sci 271: 586; Schubert KV, Busse G, Strey R, Kahlweit M (1993) J Phys Chem 97: 248

    Article  Google Scholar 

  123. Meliani A, Perez E, Rico I, Lattes A, Moisand A (1991) New J Chem 15: 871

    Google Scholar 

  124. Beerbower A, Nixon J, Wallace TJ (1968) J Aircraft 5: 367

    Google Scholar 

  125. Nixon J, Beerbower A (1969) Am Chem Soc Div Petrol Chem Prepr 14: 49

    Google Scholar 

  126. Cameron NR (1995) Ph.D. Thesis, University of Strathclyde

    Google Scholar 

  127. Ishida H, Iwama A (1984) Combust Sci Tech 36: 51

    Google Scholar 

  128. Barby D, Haq Z (1982) Eur Pat 0,060,138 (to Unilever)

    Google Scholar 

  129. Williams JM, Wrobleski DA (1988) Langmuir 4: 656

    Article  Google Scholar 

  130. Williams JM, Gray AJ, Wilkerson MH (1990) ibid 6: 437

    Article  Google Scholar 

  131. Litt MH, Hsieh BR, Krieger IM, Chen TT, Lu HL (1987) J Coll Interf Sci 115: 312

    Article  Google Scholar 

  132. Williams JM (1988) Langmuir 4: 44

    Article  Google Scholar 

  133. Hainey P, Huxham IM, Rowatt B, Sherrington DC, Tetley L (1991) Macromol 24: 117

    Article  Google Scholar 

  134. Small PW, Sherrington DC J. Chem Soc, Chem Commun 1989: 1589

    Google Scholar 

  135. Schoo HFM, Challa G, Rowatt B, Sherrington DC (1992) React. Pols. 16: 125

    Article  Google Scholar 

  136. Ruckenstein E, Hong L (1992) Chem Mater 4: 122

    Article  Google Scholar 

  137. Patel BA, Ziegler CB, Cortese NA, Plevyak JE, Zebovitz TC, Terpko M, Heck RF (1977) J. Org. Chem. 42: 3903; Jeffrey T, J Chem Soc, Chem Commun 1984: 1287

    Article  Google Scholar 

  138. Ruckenstein E, Park JS (1991) J Appl Polym Sci 42: 925

    Article  Google Scholar 

  139. Ruckenstein E, Park JS (1991) Polym Comp 12: 289

    Article  Google Scholar 

  140. Ruckenstein E, Chen J.-H (1991) ibid 43: 1209

    Google Scholar 

  141. Ruckenstein E, Park JS (1991) Synth Metals 44: 293

    Article  Google Scholar 

  142. Riess G Université de Mulhouse, private communication

    Google Scholar 

  143. Williams JM, Wilkerson MH (1990) Polymer 31: 2162

    Article  Google Scholar 

  144. Even Jr. WR, Gregory DP (1994) MRS Bull 19: 29

    Google Scholar 

  145. Ruckenstein E, Wang X (1993) Biotech Bioeng 42: 821

    Article  Google Scholar 

  146. Ruckenstein E, Wang X (1994) ibid 44: 79

    Article  Google Scholar 

  147. Williams JM, Wrobleski DA (1989) J Matt Sci Lett 24: 4062

    Article  Google Scholar 

  148. Bartl H, von Bonin W (1962) Makromol Chem 57: 74

    Article  Google Scholar 

  149. Bartl H, von Bonin W (1963) ibid 66: 151

    Article  Google Scholar 

  150. Rogez D, Marti S, Nervo J, Riess G (1975) Makromol Chem 176: 1393

    Article  Google Scholar 

  151. Horie K, Mita I, Kambe H (1967) J Appl Polym Sci 11: 57

    Article  Google Scholar 

  152. Horie K, Mita I, Kambe H (1968) ibid 12: 13

    Article  Google Scholar 

  153. Elmes AR, Hammond K, Sherrington DC (1988) Eur Pat Appl 0,289,238

    Google Scholar 

  154. Edwards CJC, Hitchen DA, Sharples M (1988) U.S. Pat. no. 4,755,655

    Google Scholar 

  155. Gregory DP Unilever Research Laboratory, Port Sunlight, private communication

    Google Scholar 

  156. Elmes AR, Sherrington DC, unpublished results

    Google Scholar 

  157. Ruckenstein E, Kim K-J (1988) J Appl Polym Sci 36: 907

    Article  Google Scholar 

  158. Sun F, Ruckenstein E (1993) ibid 48: 1279

    Article  Google Scholar 

  159. Ruckenstein E, Kim K-J (1989) J Polym Sci Pt A: Polym Chem 27: 4375

    Article  Google Scholar 

  160. Kim K-J, Ruckenstein E (1989) J Appl Polym Sci 38: 441

    Article  Google Scholar 

  161. Ruckenstein E, Park JS (1990) Polymer 31: 2397

    Article  Google Scholar 

  162. Hong L, Ruckenstein E (1992) ibid 33: 1968

    Article  Google Scholar 

  163. Hong L, Ruckenstein E (1991/92) React Pols 16: 181

    Google Scholar 

  164. Ruckenstein E, Hong L (1992) Chem Mater 4: 1032

    Google Scholar 

  165. Ruckenstein E, Chen J-H (1991) Polymer 32: 1230

    Google Scholar 

  166. Ruckenstein E, Yang S (1993) ibid 34: 4655

    Google Scholar 

  167. Yang S, Ruckenstein E (1993) Synth Metals 60: 249

    Google Scholar 

  168. Ruckenstein E, Yang S (1993) ibid 53: 283

    Google Scholar 

  169. Yang S, Ruckenstein E (1993) ibid 59: 1

    Google Scholar 

  170. Ruckenstein E, Hong L (1994) J Appl Polym Sci 53: 923

    Google Scholar 

  171. Ruckenstein E, Li H (1994) ibid 52: 1949

    Google Scholar 

  172. Ruckenstein E, Li H (1994) ibid 54: 561

    Google Scholar 

  173. Ruckenstein E, Li H (1994) Polymer 35: 4343

    Google Scholar 

  174. Ruckenstein E, Sun F (1992) J Appl Polym Sci 46: 1271

    Google Scholar 

  175. Hong L, Ruckenstein E (1993) ibid 48: 1773

    Google Scholar 

  176. Griffith WP, Ley SV, Whitcombe GP, White AD J Chem Soc, Chem Commun 1987: 1625

    Google Scholar 

  177. Sasson Y, Zappi GD, Neumann R (1986) J Org Chem 51: 2880

    Google Scholar 

  178. Kim K-J, Ruckenstein E (1988) Makromol Chem, Rapid Commun 9: 285

    Google Scholar 

  179. Park JS, Ruckenstein E (1990) Polymer 31: 175

    Google Scholar 

  180. Ruckenstein E, Park JS (1988) J Polym Sci Pt.C: Polym Lett 26: 529

    Google Scholar 

  181. Ruckenstein E (1989) Coll Polym Sci 267: 792

    Google Scholar 

  182. Park JS, Ruckenstein E (1989) J Appl Polym Sci 38: 453

    Google Scholar 

  183. Ruckenstein E, Park JS (1990) ibid 40: 213

    Google Scholar 

  184. Ruckenstein E, Chen HH (1991) ibid 42: 2429

    Google Scholar 

  185. Ruckenstein E, Sun F (1993) J Membrane Sci 81: 191

    Google Scholar 

  186. Sun F, Ruckenstein E (1993) ibid 85: 59

    Google Scholar 

  187. Xu G, Ruckenstein E (1992) J Appl Polym Sci 46: 683

    Google Scholar 

  188. Xu G, Ruckenstein E (1993) ibid 47: 1343

    Google Scholar 

  189. Ruckenstein E, Xu G (1993) ibid 47: 1925

    Google Scholar 

  190. Ruckenstein E, Hong L (1993) Macromol 26: 1363

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Verlag

About this chapter

Cite this chapter

Cameron, N.R., Sherrington, D.C. (1996). High internal phase emulsions (HIPEs) — Structure, properties and use in polymer preparation. In: Biopolymers Liquid Crystalline Polymers Phase Emulsion. Advances in Polymer Science, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60484-7_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-60484-7_4

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60484-6

  • Online ISBN: 978-3-540-47674-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics