Skip to main content

Memory management in flash-memory disks with data compression

  • Conference paper
  • First Online:
Memory Management (IWMM 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 986))

Included in the following conference series:

Abstract

This paper describes the design and implementation of a memory management method, Link-Fit, which allows transparent hardware data compression to be incorporated in a flash-memory based disk. Link-Fit is compared with the standard method for flash-memory management, which writes sequentially and uses copying compaction for storage reclamation. Flash-memory is different from DRAM on three accounts, it is non-volatile, it must be explicitly erased on a block basis before it can be rewritten, and it has a relatively low write performance. Data compression can improve the effective capacity, and hence the $/MB ratio by a factor of two. Likewise the write performance can be improved by a factor of two, since only half the amount of data must be written to the non-volatile store. As a result of using data compression the memory manager must handle variable sized blocks efficiently, in terms of both time overheads and storage utilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Dipert, L. Herbert, ‘Flash memory goes mainstream', IEEE Spectrum, pp. 48–52, October 1993.

    Google Scholar 

  2. Frost & Sullivan, ‘World Microdisk Drive and PCMCIA Flash Memory Card Markets', 1994.

    Google Scholar 

  3. K. Li et al, ‘A Quantitative Analysis of Disk Drive Power Management in Portable Computers', Proceedings Winter USENIX '94 Technical Conference, pp. 279–291, 1994.

    Google Scholar 

  4. M. Kjelso, M. Gooch, U. Simm, S. Jones, ‘Hardware Data Compression & Memory Management for Flash-Memory Disks', to appear in Proceedings Sixth International Symposium on IC Technology, Systems & Applications (IEEE), 1995.

    Google Scholar 

  5. J. L. Bentley, D. D. Sleator, R. E. Tarjan, V. K. Wei, ‘A Locally Actaptive Data Compression Scheme', Communications of the ACM, vol. 29, no. 4, pp. 320–330, 1986.

    Google Scholar 

  6. Microsoft Flash File System, Media Control Structures, Hardware Vendor Relations Group, Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, April 1992.

    Google Scholar 

  7. Flash Memory: Volume II, Section 10, Article Reprints, pp 10.1–10.35, Intel, 1994.

    Google Scholar 

  8. F. Douglis et al, 'storage Alternatives for Mobile Computers', Proceedings First Symposium on Operating Systems Design and Implementation, pp. 25–38, 1994.

    Google Scholar 

  9. A. Kawaguchi et al, ‘A Flash-Memory Based File System', to appear in Proceedings Winter USENIX '95 Technical Conference, 1995.

    Google Scholar 

  10. M. Wu, W. Zwaenepoel, ‘eNVy: A Non-Volatile, Main Memory Storage System', Proceedings ASPLOS VI, 1994.

    Google Scholar 

  11. Flash Memory: Volume I, Section 3, Flash File Components, pp 3.1–3.307, Intel, 1994.

    Google Scholar 

  12. SST Databook, Silicon Storage Technology Inc., 1171 Sonora Court, Sunny Vale, CA 94086, pp. 5.1–5.20, 1994.

    Google Scholar 

  13. SunDisk SDP5 Series, SunDisk Corporation, 3270 Jay Street, Santa Clara, CA 95054.

    Google Scholar 

  14. D. J. Lee et al, ‘An 18 Mb Serial Flash EEPROM for Solid-State Disk Applications', IEEE Symposium on VLSI Circuits Digest of Technical Papers, pp. 59–60, 1994.

    Google Scholar 

  15. M. Rosenblum, J. K. Ousterhout, ‘The Design and Implementation of a Log-Structured File System', 13th ACM Symposium on Operating System Principles, pp. 1–15, 1991.

    Google Scholar 

  16. M. Burrows, ‘On-line Data Compression in a Log-structured File System', ACM SIGPLAN Notices, pp. 2–9, September 1992.

    Google Scholar 

  17. S. Wells, D. Clay, ‘Flash Solid State Drive with 6MB/s Read/Write Channel and Data Compression', IEEE ISSCC Digest of Technical Papers, pp. 52–53, 1993.

    Google Scholar 

  18. D. E. Knuth, ‘The Art of Computer Programming — Fundamental Algorithms', Addison Wesley, Vol. 1, pp. 435–463, 1968.

    Google Scholar 

  19. D. G. Korn, K-P. Vo, ‘In Search of a Better Malloc', USENIX Conference, pp. 489–506, 1985

    Google Scholar 

  20. N. R. Nielsen, ‘Dynamic Memory Allocation in Computer Simulation', Communications of the ACM, Vol. 20, No. 11, pp. 864–873, 1977.

    Google Scholar 

  21. R. Caceres et al, ‘Operating Systems Implications of Solid-State Mobile Computers', IEEE Proceedings Fourth Workshop on Workstation Operating Systems, pp. 21–27, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henry G. Baler

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this paper

Cite this paper

KjelsØ, M., Jones, S. (1995). Memory management in flash-memory disks with data compression. In: Baler, H.G. (eds) Memory Management. IWMM 1995. Lecture Notes in Computer Science, vol 986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60368-9_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-60368-9_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60368-9

  • Online ISBN: 978-3-540-45511-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics