A periodicity theorem on words and applications

  • Filippo Mignosi
  • Antonio Restivo
  • Sergio Salemi
Contributed Papers Formal Languages
Part of the Lecture Notes in Computer Science book series (LNCS, volume 969)


We prove a periodicity theorem on words that has strong analogies with the Critical Factorization theorem and we show three applications of it.


String Match Free Word Infinite Word Binary Alphabet Short Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crochemore M. and Rytter W., “Squares, Cubes and Time-Space Efficient String-Searching”, Tech. Rep. LITP 91.47 (July 1991).Google Scholar
  2. 2.
    Currie J. D., “Open Problems in Pattern Avoidance” Amer. Math. Montly, 100, pp. 790–793, October 1993.Google Scholar
  3. 3.
    Currie J. D., “On the Structure and Extendibility of k-Power Free Words”, Preprint, 1995.Google Scholar
  4. 4.
    Currie J. D., Shelton R., Private Communication 1995.Google Scholar
  5. 5.
    Currie J. D., Shelton R., “Cantor Sets and Dejean's Conjecture”, Preprint 1995.Google Scholar
  6. 6.
    Cesari Y. and Vincent M. “Une Caractérisation des Mots Périodiques” C. R. Acad. Sc. Paris, t. 286 (19 juin 1978) Série A pp. 1175–1177.Google Scholar
  7. 7.
    de Luca A., “A Combinatorial Property of the Fibonacci Words”, Inform. Process. Lett., 12 nℴ4 (1981), pp. 195–195.Google Scholar
  8. 8.
    Duval J. P., “Périodes et Répetitions des Mots du Monoide Libre” Theor. Comp. Science 9 (1979) pp. 17–26.Google Scholar
  9. 9.
    Fife E.D., “Binary Sequence which contains no BBb” Trans. Amer. Math. Society 261 (1) (1980), 115–136.Google Scholar
  10. 10.
    Galil Z. and Seiferas J., “Time-Space Optimal String Matching” J. of Computer and Sys. Sciences 26 (1983), pp. 280–294.Google Scholar
  11. 11.
    Lothaire M., “Combinatorics on Words”, Addison Wesley, vol. 17 Encidopedia of Matematics and its Applications (1983).Google Scholar
  12. 12.
    Mignosi F. Pirillo G., “Repetitions in the Fibonacci Infinite Word” RAIRO Theor. Informatics and Applications, vol 26, nℴ 3, (1992), pp. 199–204.Google Scholar
  13. 13.
    Restivo A. and Salemi S., “Overlap Free Words on Two Symbols” Lecture Notes in Comp. Science Vol 192 (1984) pp. 198–206.Google Scholar
  14. 14.
    Shallit J., Private Communication, 1994.Google Scholar
  15. 15.
    Shelton R. and Sony R., “Aperiodic Words on the Three Symbols 1, 2, 3”, J. Reine Angew. Math. 321 (1982), pp. 195–209, in Combinatorics on Words, Cumming L. ed. (Academic Press, New York), pp. 101–118 (1993), J. Reine Angew. Math. 330 (1984), pp. 44–52.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Filippo Mignosi
    • 1
  • Antonio Restivo
    • 1
  • Sergio Salemi
    • 1
  1. 1.Dipartimento di Matematica ed ApplicazioniUniversità di PalermoPalermoItaly

Personalised recommendations