Advertisement

Physics and the new computation

  • Paul Vitányi
Invited Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 969)

Abstract

New computation devices increasingly depend on particular physical properties rather than on logical organization alone as used to be the case in conventional technologies. This has impact on the synthesis and analysis of algorithms and the computation models on which they are to run. Therefore, scientists working in these areas will have to understand and apply physical law in their considerations. We discuss three cases in some detail: interconnect length and communication in massive multicomputers which depend on the geometry of space and speed of light; energy dissipation and reversible (adiabatic) computation which depend on thermodynamics; and quantum coherent parallel computing which depends on quantum mechanics.

Keywords

Random Graph Turing Machine Quantum Cryptography Truth Assignment Computation Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Adleman, 1994]
    L. Adleman, Molecular computation of solutions to combinatorial problems, Science, Vol 266, Nov 1994, 1021–1024; A Vat of DNA May Become Fast Computer Of the Future, Gina Kolata in: The New York Times, April 11, 1995, Science Times, pp. C1, C10.PubMedGoogle Scholar
  2. [Barenco et. al]
    A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVicenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, Elementary gates for quantum computation, submitted to Physical Review A, March 1995.Google Scholar
  3. [Benioff, 1980–1986]
    P. Benioff, J. Stat. Phys., 22 (1980), 563–591, also J. Math. Phys., 22(1981), 495–507, Int. J. Theoret. Phys., 21(1982), 177–201, Phys. Rev. Letters, 48(1982), 1581–1585, J. Stat. Phys., 29(1982), 515–546, Phys. Rev. Letters, 53(1984), 1203, Ann. New York Acad. Sci., 480(1986), 475–486.Google Scholar
  4. [Benioff, 1995]
    P. Benioff, Review of quantum computation, In: Trends in Statistical Physics, Council of Scientific Information, Trivandrum, India, To be published.Google Scholar
  5. [Bennett, 1973]
    C.H. Bennett. Logical reversibility of computation. IBM J. Res. Develop., 17:525–532, 1973.Google Scholar
  6. [Bennett, 1982]
    C.H. Bennett. The thermodynamics of computation—a review. Int. J. Theoret. Phys., 21(1982), 905–940.Google Scholar
  7. [Bennett, 1989]
    C.H. Bennett. Time-space trade-offs for reversible computation. SIAM J. Comput., 18(1989), 766–776.CrossRefGoogle Scholar
  8. [Bennett, et al., 1992]
    C.H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, Experimental quantum cryptography, J. Cryptology, 5:1(1992), 3–28; C.H. Bennett, G. Brassard and A. Ekert, Quantum cryptography, Scientific American, Oct. 1992, 50–57.Google Scholar
  9. [Bennett et al., 1993]
    C.H. Bennett, P. Gács, M. Li, P.M.B. Vitányi and W.H Zurek, Thermodynamics of computation and information distance Proc. 25th ACM Symp. Theory of Computation. ACM Press, 1993, 21–30.Google Scholar
  10. [Bernstein and Vazirani, 1993]
    Bernstein, E. and U. Vazirani, “Quantum complexity theory”, Proc. 25th ACM Symposium on Theory of Computing, 1993, pp. 11–20.Google Scholar
  11. [Berthiaume et al., 1994]
    A. Berthiaume, D. Deutsch and R. Jozsa, The stabilisation of quantum computations, Proc. 3rd IEEE Workshop on Physics and Computation (PhysComp '94), IEEE Computer Society Press, 1994.Google Scholar
  12. [Brassard, 1994]
    G. Brassard, Cryptology Column—Quantum computing: The end of classical cryptography? SIGACT News, 25:4(Dec 1994), 15–21.Google Scholar
  13. [Chuang, et al., 1995]
    I.L. Chuang, R. Laflamme, P. Shor, and W.H. Zurek, Quantum computers, factoring and decoherence, Report LA-UR-95-241, Los Alamos National Labs, 1995 (quant-ph/9503007).Google Scholar
  14. [Deutsch, 1985–1992]
    D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Royal Society London. Vol. A400(1985), 97–117; see also Proc. Royal Society London, A425(1989), 73—90; with R. Josza, Proc. Royal Society London, A439(1992), 553–558.Google Scholar
  15. [Feynman, 1982–1887]
    R.P. Feynman, Simulating physics with computers, Int. J. Theoret. Physics, 21(1982), 467–488; Quantum mechanical computers. Foundations of Physics, 16(1986), 507–531. (Originally published in Optics News, February 1985); Tiny Computers Obeying Quantum Mechanical Laws. In: New Directions in Physics: The Los Alamos 40th Anniversary Volume, N. Metropolis and D. M. Kerr and G. Rota, Eds.,Academic Press, Boston, 1987, 7–25.MathSciNetGoogle Scholar
  16. [Fredkin & Toffoli, 1982]
    E. Fredkin and T. Toffoli. Conservative logic. Int. J. Theoret. Phys., 21(1982), 219–253.MathSciNetGoogle Scholar
  17. [Kiehl, 1994]
    R.A. Kiehl, Research toward Nanoelectronic computing technologies in Japan, In: Proc. 3rd Workshop on Physics and Computation (PhysComp'94), IEEE Computer Society Press, 1994, 1–4.Google Scholar
  18. [Kissin, 1982–1991]
    G. Kissin, Measuring Energy Consumption in VLSI Circuits: a Foundation, Proc. 14th ACM Symp. Theor. Comp., 1982, 99–104; Lower and Upper Bounds on the Switching Energy Consumed by VLSI Circuits, J. Assoc. Comp. Mach., 38(1991), pp. 222–254.Google Scholar
  19. [Kolmogorov, 1965]
    A.N. Kolmogorov, Three approaches to the definition of the concept ‘quantity of information', Problems in Information Transmission, 1:1(1965), 1–7.Google Scholar
  20. [Koppelman, 1995]
    D.M. Koppelman, A lower bound on the average physical length of edges in the physical realization of graphs, Manuscript Dept ECE, Lousiana State Univ. Baton Rouge, 1995.Google Scholar
  21. [Landauer, 1961]
    R. Landauer. Irreversibility and heat generation in the computing process. IBM J. Res. Develop., 5:183–191, 1961.Google Scholar
  22. [Landauer, 1991]
    R. Landauer, Information is physical, Physics Today, 44:May(1991), 23–29.Google Scholar
  23. [Landauer, 1994]
    R. Landauer, Zig-zag path to understanding. In: Proc. 3nd Workshop on Physics and Computation (PhysComp'94), IEEE Computer Society Press, 1994, 54–59.Google Scholar
  24. [Landauer, 1995]
    R. Landauer, Is quantum mechanics useful? Proc. Roy. Soc. Lond., to be published.Google Scholar
  25. [Lent et al., 1994]
    C.S. Lent, P.D. Tougaw, W. Porod, Quantum cellular automata: The physics of computing with arrays of quantum dot molecules. In: Proc. 3nd Workshop on Physics and Computation (PhysComp'94), IEEE Computer Society Press, 1994, 5–13; also J. Appl. Phys., 74(1993), 3558, 4077, 6227, 75(1994), 1818.Google Scholar
  26. [Li & Vitányi, 1993]
    M. Li and P.M.B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Springer-Verlag, New York, 1993.Google Scholar
  27. [Li & Vitányi, 1994]
    M. Li and P.M.B. Vitányi. Irreversibility and Adiabatic Computation: Trading time for energy, submitted.Google Scholar
  28. [Mead & Conway, 1980]
    C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley, 1980.Google Scholar
  29. [Proc. PhysComp, 1981, 1992, 1994]
    Proc. 1981 Physics and Computation Workshop. Int. J. Theoret. Phys., 21(1982). Proc. 1992 Physics and Computation Workshop. IEEE Computer Society Press, 1992. Proc. 1994 Physics and Computation Workshop. IEEE Computer Society Press, 1994.Google Scholar
  30. [Schuhmacher, 1994]
    , B.W. Schumacher, On Quantum coding, Phys. Rev. A, in press to appear in 1995; (with R. Josza), A new proof of the quantum noiseless coding theorem, J. Modern Optics, 41(1994), 2343–2349.Google Scholar
  31. [Shannon, 1948]
    C.E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27(1948), 379–423, 623–656.Google Scholar
  32. [Shor, 1994]
    Shor, P., Algorithms for quantum computation: Discrete log and factoring, Proc. 35th IEEE Symposium on Foundations of Computer Science, 1994, 124–134.Google Scholar
  33. [Simon, 1994]
    Simon, D., On the power of quantum computation, Proc. 35th IEEE Symposium on Foundations of Computer Science, 1994.Google Scholar
  34. [Thompson, 1979]
    C. Thompson, Area-time complexity for VLSI, Proc. 11th ACM Symp. Theor. Comp., 1979, 81–88.Google Scholar
  35. [Ullman, 1984]
    J. Ullman, Computational Aspects of VLSI, Computer Science Press, Rockville, MD, 1984.Google Scholar
  36. [Unruh, 1995]
    Unruh, W. G., Maintaining coherence in quantum computers, Physical Review A, 51(1995), 992-.PubMedGoogle Scholar
  37. [Upfal and Wigderson, 1987]
    E. Upfal and A. Wigderson, How to share memory on a distributed system, J. Assoc. Comp. Mach., 34(1987), 116–127.Google Scholar
  38. [Vitányi, 1985]
    Area penalty for sublinear signal propagation delay on chip, Proceedings 26th IEEE Symposium on Foundations of Computer Science, 1985, 197–207.Google Scholar
  39. [Vitányi, 1986]
    P.M.B. Vitányi, Non-sequential computation and Laws of Nature, In: VLSI Algorithms and Architectures (Proceedings Aegean Workshop on Computing, 2nd International Workshop on Parallel Processing and VLSI), Lecture Notes In Computer Science 227, Springer Verlag, 1986, 108–120.Google Scholar
  40. [Vitányi, 1988]
    P.M.B. Vitányi, Locality, communication and interconnect length in multicomputers, SIAM J. Computing, 17 (1988), 659–672.CrossRefGoogle Scholar
  41. [Vitányi, 1994]
    P.M.B. Vitányi, Multiprocessor architectures and physical law. In: Proc. 3rd Workshop on Physics and Computation (PhysComp'94), IEEE Computer Society Press, 1994, 24–29.Google Scholar
  42. [Burks, 1966]
    J. von Neumann. Theory of Self-Reproducing Automata. A.W. Burks, Ed., Univ. Illinois Press, Urbana, 1966.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Paul Vitányi
    • 1
  1. 1.CWI and University of AmsterdamThe Netherland

Personalised recommendations