Advertisement

Symbolic dynamics and finite automata

  • Dominique Perrin
Invited Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 969)

Abstract

In this survey, we present some connections between notions and results in automata theory and other ones in symbolic dynamics.

Keywords

Zeta Function Rational Code Finite Type Finite Automaton Symbolic Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roy Adler, I. Goodwin, and Benjamin Weiss. Equivalence of topological Markov shifts. Israel J. Math., 27:49–63, 1977.Google Scholar
  2. 2.
    John Ashley, Brian Marcus, Dominique Perrin, and Selim Tuncel. Surjective extensions of sliding block codes. SIAM J. Discrete Math., 6:582–611, 1993.CrossRefGoogle Scholar
  3. 3.
    Frédérique Bassino. Hauteur d'étoile d'une série IN-rationnelle. Technical report, Institut Gaspard Monge, 1995.Google Scholar
  4. 4.
    Marie-Pierre Béal. Codage Symbolique. Masson, 1993.Google Scholar
  5. 5.
    Marie-Pierre Béal and Olivier Carton. Cyclic languages and languages of stabilizers. Technical report, Institut Gaspard Monge, 1995.Google Scholar
  6. 6.
    Danièle Beauquier. Minimal automaton for a factorial, transitive rational language. Theoret Comput. Sci., 67:65–73, 1989.Google Scholar
  7. 7.
    Tim Bedford, Michael Keane, and Caroline Series, editors. Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces. Oxford University Press, 1991.Google Scholar
  8. 8.
    Jean Berstel and Dominique Perrin. Theory of codes. Academic Press, 1985.Google Scholar
  9. 9.
    Jean Berstel and Christophe Reutenauer. Zeta functions of formal languages. Trans. Amer. Math. Soc., 321:533–546, 1990.Google Scholar
  10. 10.
    François Blanchard and Georges Hansel. Languages and subshifts. In M. Nivat and D. Perrin, editors, Automata on Infinite Words, volume 192 of Lecture notes in Computer Science, pages 138–146. Springer Verlag, 1985.Google Scholar
  11. 11.
    François Blanchard and Alejandro Maass. On dynamical properties of generalized cellular automata. In Ricardo Baeeza-Yates and Eric Goles, editors, LATIN 95: Theoretical Informatics, volume 911 of Lecture Notes in Comput. Sci., pages 84–98, 1995.Google Scholar
  12. 12.
    Rufus Bowen and O. Lanford. Zeta functions of restrictions of the shift transformation. Proc. Symp. Pure Math., 14:43–50, ?Google Scholar
  13. 13.
    Mike Boyle. Symbolic dynamics and matrices. In S Friedland, V. Brualdi, and V. Klee, editors, Combinatorial and Graph-Theoretic Problems in Linear Algebra, volume 50 of IMA Volumes in Mathematics and its Applications. 1993.Google Scholar
  14. 14.
    Véronique Bruyère, L. Wong, and Liang Zhang. On completion of codes with finite deciphering delay. European J. Combin., 11:513–521, 1990.Google Scholar
  15. 15.
    Christian Choffrut. Conjugacy in free inverse monoids. Int. J. Alg. Comput., 3:169–188, 1993.Google Scholar
  16. 16.
    R. Fischer. Sofic systems and graphs. Monatshefte Math., 80:179–186, 1975.Google Scholar
  17. 17.
    Christiane Frougny and Boris Solomyak. Finite beta-expansions. Ergod. Th. & Dynam. Syst., 12:45–82, 1992.Google Scholar
  18. 18.
    David Handelman. Positive matrices and dimension groups affiliated to C *- algebras and topological Markov chains. J. Operator Theory, 6:55–74, 1981.Google Scholar
  19. 19.
    David Handelman. Spectral radii of primitive integral companion matrices and log-concave poynomials. In Peter Walters, editor, Symbolic Dynamics and its Applications, volume 135 of Contemporary Mathematics, pages 231–238. Amer. Math. Soc., 1992.Google Scholar
  20. 20.
    K. H. Kim and F. W. Roush. Decidability of shift equivalence. In Symbolic Dynamics, volume 1342 of Lecture Notes in Mathematics, pages 374–424. Springer, 1988.Google Scholar
  21. 21.
    K. H. Kim and F. W. Roush. William's conjecture is false for reducible matrices. J. Amer. Math. Soc., 5:213–215, 1992.Google Scholar
  22. 22.
    Wolfgang Krieger. On the subsystems of topological Markov chains. Ergod. Th. & Dynam. Syst., 2:195–202, 1982.Google Scholar
  23. 23.
    Anthony Manning. Axiom a diffeomorphisms have rational zeta function. Bull. London Math. Soc., 3:215–220, 1971.Google Scholar
  24. 24.
    M. Morse and G. Hedlund. Symbolic dynamics. Amer. J. of Math., 3:286–303, 1936.Google Scholar
  25. 25.
    Marston Morse. Recurrent geodesics on a surface of negative curvature. Trans. Amer. Math. Soc., 22:84–110, 1921.MathSciNetGoogle Scholar
  26. 26.
    Dominique Perrin. Arbres et séries rationnelles. C. R. Acad. Sci. Paris, 309:713–716, 1989.Google Scholar
  27. 27.
    Dominique Perrin and Marcel-Paul Schützenberger. Synchronizing prefix codes and automata and the road coloring problem. In Peter Walters, editor, Symbolic Dynamics and its Applications, volume 135 of Contemporary Mathematics, pages 295–318. Amer. Math. Soc., 1992.Google Scholar
  28. 28.
    Antonio Restivo. Codes and local constraints. Theoret. Comput. Sci., 72:55–64, 1990.Google Scholar
  29. 29.
    Christophe Reutenauer. Non commutative factorization of variable length codes. J. Pure and Applied Algebra, 36:157–186, 1985.Google Scholar
  30. 30.
    A. Salomaa and Matti Soittola. Automatic-Theoretic Aspects of Formal Power Series. New York, Springer-Verlag, 1978.Google Scholar
  31. 31.
    Marcel-Paul Schützenberger. On synchronizing prefix codes. Inform and Control, 11:396–401, 1967.Google Scholar
  32. 32.
    Peter Walters, editor. Symbolic Dynamics and its Applications, volume 135 of Contemporary Mathematics. Amer. Math. Soc., 1992.Google Scholar
  33. 33.
    Benjamin Weiss. Subshifts of finite type and sofic systems. Monats. Math., 77:462–474, 1973.Google Scholar
  34. 34.
    Frank Williams. Classification of subshifts of finite type. Ann. of Math., 98:120–153, 1973. (Errata ibid. 99:380–381,1974).Google Scholar
  35. 35.
    Liang Zhang and Zhonghui Shen. Completion of recognizable bifix codes. Theoret. Comput. Sci., 145:345–355, 1995.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Dominique Perrin
    • 1
  1. 1.Université de Marne la ValléeNoisy le GrandFrance

Personalised recommendations