Advertisement

The complexity of interval routing on random graphs

Extended abstract
  • Michele Flammini
  • Jan van Leeuwen
  • Alberto Marchetti-Spaccamela
Invited Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 969)

Abstract

Several methods exist for routing messages in a network without using complete routing tables (compact routing). In k-interval routing schemes (k-IRS), nodes assign up to k intervals to each incident link. A message is routed over a link if its destination belongs to one of the intervals of the link. We give some results for the necessary value of k in order to achieve shortest path routing. Even though for very structured networks low values of k suffice, we show that for ‘general graphs’ interval routing cannot significantly reduce the space-requirements for shortest path routing. In particular, for any δ>0, there exist classes of random graphs G n, p for all n sufficiently large such that with high probability an optimal k-IRS for a graph GG n, p requires k = Ω(n1−δ).

Keywords

Short Path Random Graph Optimal Route Edge Label Node Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Afek, E. Gafni, M. Ricklin. Upper and lower bounds for routing schemes in dynamic networks. Proc. 30th Annual IEEE Symp. on Foundations of Computer Science, pp. 370–375, 1989.Google Scholar
  2. 2.
    B. Awerbuch, A. Bar-Noy, N. Linial, D. Peleg. Compact distributed data structures for adaptive routing. Proc. 21st Annual ACM Symp. on Theory of Computing, pp. 479–489, 1989.Google Scholar
  3. 3.
    B. Awerbuch, A. Bar-Noy, N. Linial, D. Peleg. Improved routing strategies with succinct tables. Journal of Algorithms, 11, pp. 307–341, 1990.CrossRefGoogle Scholar
  4. 4.
    B. Awerbuch, D. Peleg. Routing with polynomial communication-space tradeoff. SIAM Journal on Discrete Math, 5, pp. 151–162, 1992.CrossRefGoogle Scholar
  5. 5.
    E.M. Bakker. Combinatorial Problems in Information Networks and Distributed Datastructuring, Ph.D. Thesis, Dept. of Computer Science, Utrecht University, 1991.Google Scholar
  6. 6.
    E.M. Bakker, J. van Leeuwen, R.B. Tan. Linear interval routing. Algorithms Review, 2, 2, pp. 45–61, 1991.Google Scholar
  7. 7.
    E.M. Bakker, J. van Leeuwen, R.B. Tan. Prefix routing schemes in dynamic networks, Computer Networks and ISDN Systems 26, pp. 403–421, 1993.Google Scholar
  8. 8.
    H.L. Bodlaender, R.B. Tan, D. Thilikos, J. van Leeuwen. On interval routing schemes and treewidth, extended abstract, Dept. of Computer Science, Utrecht University, 1995.Google Scholar
  9. 9.
    B. Bollobás. Random Graphs, Academic Press, London, 1985.Google Scholar
  10. 10.
    H. Chernoff. A measure of the asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Statistics 23, pp. 493–509, 1952.Google Scholar
  11. 11.
    M. Flammini, G. Gambosi, S. Salomone: Boolean routing, in: A. Schiper (Ed.), Distributed Algorithms, Proc. 7th Int. Workshop (WDAG '93), Lecture Notes in Computer Science 725, Springer-Verlag, Berlin, pp. 219–233, 1993.Google Scholar
  12. 12.
    M. Flammini, G. Gambosi, and S. Salomone. Interval labeling schemes for chordal rings Technical Report Nr. 52, Department of Pure and Applied Mathematics, University of L'Aquila, L'Aquila, 1994.Google Scholar
  13. 13.
    M. Flammini, G. Gambosi, S. Salomone. On the complexity of devising interval routing schemes. Submitted for publication, 1994.Google Scholar
  14. 14.
    M. Flammini, G. Gambosi, S. Salomone. On devising Boolean routing schemes, Submitted for publication, 1994.Google Scholar
  15. 15.
    M. Flammini, G. Gambosi, S. Salomone. Interval routing schemes, in: E. W. Mayr and C. Puech (Eds.), STACS 95 — 12th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 900, Springer-Verlag, Berlin, pp. 279–290, 1995.Google Scholar
  16. 16.
    M. Flammini, J. van Leeuwen, A. Marchetti-Spaccamela. Lower bounds on interval routing, Technical Report Nr. 69, Department of Pure and Applied Mathematics, University of L'Aquila, L'Aquila, 1994.Google Scholar
  17. 17.
    M. Flammini, J. van Leeuwen, A. Marchetti-Spaccamela. The complexity of interval routing on random graphs (revised version of reference [16]), Technical Report UU-CS-95-16, Department of Computer Science, Utrecht University, Utrecht, 1995.Google Scholar
  18. 18.
    P. Fraigniaud, C. Gavoille. Interval routing schemes, Research Rep 94-04, Lab. de l'Informatique du Parallélisme, Ecole Normale Supérieure de Lyon. 1994.Google Scholar
  19. 19.
    P. Fraigniaud, C. Gavoille. Optimal interval routing, in: B. Buchberger, J. Volkert (Eds.), Parallel Processing: CONPAR 94 — VAPP VI, Proc. Third Joint Int. Conference, Lecture Notes in Computer Science 854, Springer-Verlag, Berlin, pp. 785–796, 1994.Google Scholar
  20. 20.
    P. Fraigniaud, C. Gavoille. A characterisation of networks supporting linear interval routing schemes, in: Proc. 13th Annual ACM Symp. on Principles of Distributed Computing (PODC'94), pp. 216–224, 1994.Google Scholar
  21. 21.
    P. Fraigniaud, C. Gavoille. Memory requirement for universal routing schemes, Research Rep. 95-05, Lab. de l'Informatique du Parallélisme, Ecole Normale Supérieure de Lyon. 1995.Google Scholar
  22. 22.
    G.N. Frederickson. Searching among intervals and compact routing tables, in: A. Lingas, R. Karlsson, S. Carlsson (Eds.), Automata, Languages and Programming, 20 the Int. Colloquium (ICALP 93), Lecture Notes in Computer Science 700, Springer-Verlag, Berlin, pp. 28–39, 1993.Google Scholar
  23. 23.
    G.N. Frederickson, R. Janardan. Designing networks with compact routing tables. Algorithmica, 3, pp. 171–190, 1988.MathSciNetGoogle Scholar
  24. 24.
    G.N. Frederickson, R. Janardan. Space-efficient and fault-tolerant message routing in outerplanar networks, IEEE Trans. on Computers, 37, pp. 1529–1540, 1988.Google Scholar
  25. 25.
    G.N. Frederickson, R. Janardan. Efficient message routing in planar networks. SIAM Journal on Computing, 18, pp. 843–857, 1989.CrossRefGoogle Scholar
  26. 26.
    G.N. Frederickson, R. Janardan. Space-efficient message routing in c-decomposable networks. SIAM Journal on Computing, 19, pp. 164–181, 1990.CrossRefGoogle Scholar
  27. 27.
    C. Gavoille, E. Guévremont, Worst case bounds for shortest path interval routing, Research Rep 95-02, Lab. de l'Informatique du Parallélisme, Ecole Normale Supérieure de Lyon. 1995.Google Scholar
  28. 28.
    H. Hofestädt, A. Klein, E. Reyzl. Performance benefits from locally adaptive interval routing in dynamically switched interconnection networks, in: A. Bode (Ed.), Contributed Memory Computing, Proc. 2nd European Conference, Lecture Notes in Computer Science 487, Springer-Verlag, Berlin, pp. 193–202, 1991.Google Scholar
  29. 29.
    E. Kranakis, D. Krizanc, S.S. Ravi. On multi-label linear interval routing schemes, in: J. van Leeuwen (Ed.), Graph-Theoretic Concepts in Computer Science, Proc. 19-th Int. Workshop (WG '93), Lecture Notes in Computer Science 790, Springer-Verlag, Berlin, pp. 338–349, 1994.Google Scholar
  30. 30.
    D. May, P. Thompson. Transputers and Routers: Components for Concurrent Machines, Inmos, 1991.Google Scholar
  31. 31.
    D. Peleg, E. Upfal. A trade-off between space and efficiency for routing tables. Journal of the ACM, 36, 3, pp. 510–530, 1989.CrossRefGoogle Scholar
  32. 32.
    S.C. Port. Theoretical Probability for Applications. J. Wiley & Sons, New York, 1994.Google Scholar
  33. 33.
    P. Ruzička. On efficiency of interval routing algorithms, in: M.P. Chytil, L. Janiga, V. Koubek (Eds.), Mathematical Foundations of Computer Science 1988, Lecture Notes in Computer Science 324, Springer-Verlag, Berlin, pp. 492–500, 1988.Google Scholar
  34. 34.
    P. Ruzička. A note on the efficiency of an interval routing algorithm, The Computer Journal, 34, pp. 475–476, 1991.CrossRefGoogle Scholar
  35. 35.
    M. Santoro, R. Khatib. Labelling and implicit routing in networks. The Computer Journal, 28, pp. 5–8, 1985.CrossRefGoogle Scholar
  36. 36.
    S.S.H. Tse, F.C.M. Lau. A lower bound for interval routing in general networks. Techn. Report, Dept. of Computer Science, The University of Hong Kong, Hong Kong, 1994.Google Scholar
  37. 37.
    S.S.H. Tse, F.C.M. Lau. On 2-label interval routing, Techn. Report, Dept. of Computer Science, The University of Hong Kong, Hong Kong, 1995.Google Scholar
  38. 38.
    J. van Leeuwen, R.B. Tan. Routing with compact routing tables. In: G. Rozenberg and A. Salomaa (eds.), The book of L, Springer-Verlag, Berlin, pp. 259–273, 1986.Google Scholar
  39. 39.
    J. van Leeuwen, R.B. Tan. Interval routing. The Computer Journal, 30, pp. 298–307, 1987.CrossRefGoogle Scholar
  40. 40.
    J. van Leeuwen, R.B. Tan. Compact routing methods: a survey, Techn. Report RUU-CS-95-05, Dept. of Computer Science, Utrecht University, 1995.Google Scholar
  41. 41.
    J. Vounckx, G. Deconinck, R. Cuyvers, R. Lauwereins, J.A. Peperstraete. A survey of compact routing techniques, Internal Report, Electrotechnical Dept (ESAT-ACCA), Kath. Universiteit Leuven, Heverlee, 1993.Google Scholar
  42. 42.
    J. Vounckx, G. Deconinck, R. Cuyvers, R. Lauwereins, J.A. Peperstraete. Network fault-tolerance with interval routing devices, in: Proceedings 11th IASTED Int. Symposium on Applied Informatics, Annecy, France, pp. 293–296, 1993. Revised version to appear in Int. J. of Mini and Microcomputers.Google Scholar
  43. 43.
    J. Vounckx, G. Deconinck, R. Lauwereins, J.A. Peperstraete. Fault-tolerant compact routing based on reduced structural information in wormhole-switching based networks, in: Colloquium on Structural Information Information and Communication Complexity (SICC 94), Pre-Proceedings, School of Computer Science, Carleton University, Ottawa, 1994.Google Scholar
  44. 44.
    J. Vounckx, G. Deconinck, R. Lauwereins, J.A. Peperstraete. Deadlock-free fault-tolerant wormhole routing in mesh-based massively parallel systems, in: Technical Committee on Computer Architecture (TCCA) Newsletter, IEEE Computer Society, Summer-Fall issue, pp. 49–54, 1994.Google Scholar
  45. 45.
    J. Vounckx, G. Deconinck, R. Cuyvers, R. Lauwereins, Minimal deadlock-free compact routing in wormhole-switching based injured meshes, Internal Report, Electrotechnical Dept (ESAT-ACCA), Kath. Universiteit Leuven, Heverlee, 1994, also in: Proc. 2nd Reconfigurable Architectures Workshop, Santa Barbara, Ca. 1995.Google Scholar
  46. 46.
    B. Zerrouk. Du routage par intervalles, Technical Report MASI-RR-93-12, Institut Blaise Pascal, Univ. Pierre et Marie Curie, Paris, 1994, also in: Actes du Congrès Biennal de l'AFCET sur les Technologies de l'Information, Versailles, 1993.Google Scholar
  47. 47.
    B. Zerrouk, J.M. Blin, A. Greiner. Encapsulating networks and routing, in: Proc. 8th Int. Parallel Processing Symposium (IPPS'94), Cancùn, pp. 547–553, 1994.Google Scholar
  48. 48.
    B. Zerrouk, S. Tricot, B. Rottembourg. Proper linear interval routing schemes, Technical Report, Institut Blaise Pascal, Univ. Pierre et Marie Curie, Paris, 1993.Google Scholar
  49. 49.
    B. Zerrouk, S. Tricot, B. Rottembourg. Improved results on the characterisation of biased interval labeling schemes, Parallel Processing Letters, 1995 (to appear).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Michele Flammini
    • 1
    • 3
  • Jan van Leeuwen
    • 2
  • Alberto Marchetti-Spaccamela
    • 3
  1. 1.Dip. di Informatica e SistemisticaUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Department of Computer ScienceUtrecht UniversityCH UtrechtThe Netherlands
  3. 3.Dip. di Matematica Pura e ApplicataUniversity of L'AquilaL'aquilaItaly

Personalised recommendations