Decomposable structures, Boolean function representations, and optimization

  • Stefan Arnborg
Invited Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 969)


We show the connection between the theory of bounded treewidth graphs, monadic second order definable structures and sets, and boolean decision diagrams. We survey recent results in algorithms for bounded treewidth, symbolic model checking and representation schemes for Boolean functions. Some practical applications are indicated.


Binary Tree Order Logic Structure Algebra Propositional Formula Graph Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. ARNBORG, Graph decompositions and tree automata in reasoning with uncertainty, Journal of Theoretical and Experimental Artificial Intelligence 5 (1993) 335–357Google Scholar
  2. 2.
    S. ARNBORG, Decomposability helps for logics of knowledge and belief. Graph Transformations in Computer Science, Dagstuhl 1993, LNCS 776 37–50.Google Scholar
  3. 3.
    S. ARNBORG, A general purpose MSOL model checker and optimizer based on Boolean function representations. presented at the Fifth International Workshop on Graph Grammars and Their Application to Computer Science, Williamsburg, Nov 1994. stefanGoogle Scholar
  4. 4.
    S. ARNBORG, B. COURCELLE A. PROSKUROWSKI AND D. SEESE, An Algebraic Theory of Graph Reduction, Journ. ACM 40 (1993) 1134–1164.Google Scholar
  5. 5.
    S. ARNBORG, J. LAGERGREN AND D. SEESE, Easy Problems for Tree-decomposable graphs J. of Algorithms 12 (1991) 308–340.Google Scholar
  6. 6.
    M. BAUDERON AND B. COURCELLE, Graph expressions and graph rewritings, Mathematical Systems Theory 20 (1987), 83–127CrossRefGoogle Scholar
  7. 7.
    H.L. BODLAENDER, Improved self-reduction algorithms for graphs with bounded treewidth. Discrete Applied Mathematics 54(1994) 101–116.Google Scholar
  8. 8.
    R. B. BORIE, Generation of polynomial time algorithms for some optimization problems on tree-decomposable graphs.Google Scholar
  9. 9.
    R. BRYANT, Graph Based Algorithms for Boolean Function Manipulation IEEE Trans. Computers C-35 (1986) 677–691.Google Scholar
  10. 10.
    R. BRYANT, Symbolic Boolean Manipulation with Ordered Bolean-Decision Diagrams. ACM Computing Surveys 24 (1992) 293–318.CrossRefGoogle Scholar
  11. 11.
    J. R. BURCH, E. M. CLARKE, K. L. McMILLAN, D.L. DILL AND L. J. HWANG, Symbolic Model Checking: 1020 states and beyond Information and Computation 98 (1992) 142–170.CrossRefGoogle Scholar
  12. 12.
    D.G. CORNEIL, H. LERCHS AND L. STEWART BURLINGHAM, Complement Reducible Graphs, Discrete Appl. Math. 3 (1981), 163–174.Google Scholar
  13. 13.
    B. COURCELLE, The monadic second order logic of graphs I: Recognizable sets of finite graphs, Information and Computation 85(1) March 1990, 12–75CrossRefGoogle Scholar
  14. 14.
    B. COURCELLE, Monadic second order definable graph transductions: a survey, Theoretical Computer Science 126(1994), 53–75MathSciNetGoogle Scholar
  15. 15.
    B. COURCELLE AND M. MOSBAH, Monadic second order evaluations on tree-decomposable graphs, Theoretical Computer Science 109(1993), 49–82Google Scholar
  16. 16.
    Discrete Applied Mathematics54 (1994) 281-290.Google Scholar
  17. 17.
    J.E. DONER, Decidability of the Weak Second-Order theory of two Successors, Abstract 65T-468, Notices Amer. Math. Soc. 12 (1965), 819, ibid. (1966), 513 Google Scholar
  18. 18.
    D. DUBOIS AND H. PRADE Inference in possibilistic hypergraphs. Proc. 3rd Int. Conf. Information Processing and Management of Uncertainty in Knowledge based Systems (IPMU), Paris, July 1990.Google Scholar
  19. 19.
    M.R. GAREY AND D.S. JOHNSON, Computers and Intractability, W.H. Freeman and Company, San Francisco (1979).Google Scholar
  20. 20.
    J.G. HENRIKSEN, O.J.L. JENSEN, M.E. JØRGENSEN, N. KLARLUND, R. PAIGE, T. RAUHE And A.B. SANDHOLM, MONA: Monadic Second-Order Logic in Practice. BRICS Report RS-95-21 Google Scholar
  21. 21.
    K. L. McMILLAN, Hierarchical representations of discrete functions, with applications to model checking 6th International conference on Computer Aided Verification, LNCS 818 (1994) 41–54.Google Scholar
  22. 22.
    N. NILSSON, Probabilistic logic, Artificial Intelligence 28 (1986) 71–87CrossRefGoogle Scholar
  23. 23.
    R. PARIKH, On context-free languages, JACM 13(1966) 570–581Google Scholar
  24. 24.
    J. PEARL, Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann Publishers, Inc. San Mateo 1988 Google Scholar
  25. 25.
    M.O. RABIN, Decidable theories, In Handbook of Mathematical Logic, ed. by K.J. Barwise, North-Holland Publishing Company, 1977 595–629.Google Scholar
  26. 26.
    P. SHENOY, A valuation-based language for expert systems. Int. Journal of Approximate Reasoning 3 (1989) 383–411.Google Scholar
  27. 27.
    P. SHENOY, G. SHAFER, Axioms for probability and belief function propagation, in Uncertainty in Artificial Intelligence 4 (R.D. Shachter, T.S. Levitt, L.N. Kanal, J.F.Lemmer, Eds.) Elsevier Science Publishers B.V. 1990.Google Scholar
  28. 28.
    J.R. SHOENFIELD, Mathematical Logic, Reading 1967, Addison-Wesley.Google Scholar
  29. 29.
    M. STARKEY AND R. BRYANT, Using Ordered Binary-Decision Diagrams for Compressing Images and Image Sequences, Carnegie Mellon University CMU-CS-95-105 Google Scholar
  30. 30.
    J.W. THATCHER, J.B. WRIGHT, Generalized Finite Automata Theory with an Application to a Decision Problem in Second-Order Logic, Mathematical Systems Theory 2 (1968), 57–81.Google Scholar
  31. 31.
    E. WANKE On the decidability of certain integer subgraph problems on context-free graph languages, Information and Computation, 113 (1994) 26–49Google Scholar
  32. 32.
    E. WANKE k-NLC graphs and polynomial algorithms Discrete Applied Mathematics 54 (1994) 251–266.Google Scholar
  33. 33.
    T.V. WIMER, Linear algorithms on it-terminal graphs, PhD. Thesis, Clemson University (1988).Google Scholar
  34. 34.
    X. ZHOU, S. NAKANO AND T. NISHIZEKI, A Linear Algorithm for edge-coloring partial k-trees, ESA93, LNCS 726, 409–418.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Stefan Arnborg
    • 1
  1. 1.Kungliga Tekniska Högskolan NADAStockholm

Personalised recommendations