Skip to main content

Computing a dominating pair in an asteroidal triple-free graph in linear time

  • Invited Presentation
  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 955))

Included in the following conference series:

Abstract

An independent set of three of vertices is called an asteroidal triple if between each pair in the triple there exists a path that avoids the neighborhood of the third. A graph is asteroidal triple-free (AT-free, for short) if it contains no asteroidal triple. The motivation for this work is provided, in part, by the fact that AT-free graphs offer a common generalization of interval, permutation, trapezoid, and cocomparability graphs. Previously, the authors have given an existential proof of the fact that every connected AT-free graph contains a dominating pair, that is, a pair of vertices such that every path joining them is a dominating set in the graph. The main contribution of this paper is a constructive proof of the existence of dominating pairs in connected AT-free graphs. The resulting simple algorithm can be implemented to run in time linear in the size of the input, whereas the best algorithm previously known for this problem has complexity OV¦3) for input graph G=(V, E).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. V. Aho, J. E. Hopcroft and J. D. Ullman, Data Structures and Algorithms, Addison-Wesley, Reading, Massachusetts, 1983.

    Google Scholar 

  2. K. A. Baker, P. C. Fishburn and F. S. Roberts, Partial orders of dimension two, Networks, 2, (1971), 11–28.

    Google Scholar 

  3. H. Balakrishnan, A. Rajaraman and C. Pandu Rangan, Connected domination and Steiner set on asteroidal triple-free graphs, Proc. Workshop on Algorithms and Data Structures, WADS'93, Montreal, Canada, August 1993, LNCS, Vol. 709, F. Dehne, J.-R. Sack, N. Santoro, S. Whitesides (Eds.), Springer-Verlag, Heidelberg, Berlin, 1993, 131–141.

    Google Scholar 

  4. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, Amsterdam, 1976.

    Google Scholar 

  5. K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms. Journal of Comput. Syst. Sci., 13 (1976), 335–379.

    Google Scholar 

  6. K. S. Booth and G. S. Lueker, A linear time algorithm for deciding interval graph isomorphism, Journal of the ACM, 26 (1979), 183–195.

    Article  Google Scholar 

  7. F. Cheah, A recognition algorithm for II-graphs, Doctoral thesis, Department of Computer Science, University of Toronto, (available as TR 246/90), 1990.

    Google Scholar 

  8. D.G. Corneil and P.A. Kamula Extensions of permutation and interval graphs, Proceedings 18th Southeastern Conference on Combinatorics, Graph Theory and Computing (1987), 267–276.

    Google Scholar 

  9. D.G. Corneil, S. Olariu and L. Stewart, Asteroidal triple-free graphs, Proc. 19th International Workshop on Graph Theoretic Concepts in Computer Science, WG'93, Utrecht, The Netherlands, June 1993, LNCS, Vol. 790, J. van Leeuwen (Ed.), Springer-Verlag, Berlin, 1994, 211–224.

    Google Scholar 

  10. D.G. Corneil, S. Olariu and L. Stewart, A linear time algorithm to compute a dominating path in an AT-free graph, Information Processing Letters, to appear.

    Google Scholar 

  11. D.G. Corneil, S. Olariu and L. Stewart, Asteroidal triple-free graphs, Technical Report TR-94-31, Department of Computer Science, Old Dominion University, November, 1994.

    Google Scholar 

  12. D.G. Corneil, S. Olariu and L. Stewart, Linear time algorithms for dominating pairs in asteroidal triple-free graphs, submitted for publication, (available as TR 294/95, Department of Computer Science, University of Toronto), extended abstract to appear in Proceedings of ICALP Conference, July 1995.

    Google Scholar 

  13. I. Dagan, M.C. Golumbic and R.Y. Pinter, Trapezoid graphs and their coloring, Discrete Applied Mathematics 21 (1988), 35–46.

    Article  Google Scholar 

  14. S. Even, A. Pnueli and A. Lempel, Permutation graphs and transitive graphs, Journal of the ACM 19 (1972), 400–410.

    Article  Google Scholar 

  15. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.

    Google Scholar 

  16. M.C. Golumbic, C.L. Monma and W.T. Trotter Jr., Tolerance graphs, Discrete Applied Mathematics 9 (1984), 157–170.

    Article  Google Scholar 

  17. D. Kratsch and L. Stewart, Domination on cocomparability graphs, SIAM Journal on Discrete Mathematics, 6 (1993) 400–417.

    Article  Google Scholar 

  18. C.G. Lekkerkerker and J.C. Boland, Representation of a finite graph by a set of intervals on the real line, Fundamenta Mathematicae 51 (1962), 45–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Selim G. Akl Frank Dehne Jörg-Rüdiger Sack Nicola Santoro

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corneil, D.G., Olariu, S., Stewart, L. (1995). Computing a dominating pair in an asteroidal triple-free graph in linear time. In: Akl, S.G., Dehne, F., Sack, JR., Santoro, N. (eds) Algorithms and Data Structures. WADS 1995. Lecture Notes in Computer Science, vol 955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60220-8_76

Download citation

  • DOI: https://doi.org/10.1007/3-540-60220-8_76

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60220-0

  • Online ISBN: 978-3-540-44747-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics