Skip to main content

Exact steady-state solution of FKP equation in higher dimension for a class of non linear Hamiltonian dissipative dynamical systems excited by Gaussian white noise

  • Resolution of Forker-Planck Equation (FPE)
  • Conference paper
  • First Online:
Probabilistic Methods in Applied Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 451))

Abstract

This paper deals with the study of nonlinear stochastic dynamical systems. We have obtained an exact steay-state probability density function for a class of multi-dimensional nonlinear Hamiltonian dissipative dynamical systems excited by Gaussian white noise. The damping can be nonlinear and parametric excitation can be taken into account. When the Hamiltonian function has a radial form, an explicit expression of the Fourier transform of the probability density function is obtained. In this case, for any finite dimension of the system, one can easily calculate any moments of random variables, by using this characteristic function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BATHE K.J. and WILSON E.L., “Numereical Methods in Finite Element Analysis”. Prentice-Hall, Inc. Englewood Cliffs, N.J. (1976).

    Google Scholar 

  2. BELLMAN R., RICHARDSON J.M., “Closure and preservation of moment properties”, J. Math. Anal. Appl., 23, pp. 639–644, (1968).

    Google Scholar 

  3. BENSOUSSAN A., LIONS J.L., PAPANICOLAOU G., “Asymototic analysis for periodic structures”, North-Holland, Amsterdam, (1978).

    Google Scholar 

  4. BERNARD P. et al., “Un algorithme de simulation stochastique par markovianisation approchée. Application á la mécanique aléatoire”, J. de Méch. Théo. et Appl., (1984).

    Google Scholar 

  5. BOUC R., “Forced vibration of mechanical systems with hysteresis”, Proc. 4éme Conf. sur les oscillations non linéaires, Prague, (1967).

    Google Scholar 

  6. BOURET R.C., FRISCH U., POUQUET A., “Brownian motion of harmonic oscillator with stochastic frequency”, Physica, 65, pp. 303–320, North-Holland, (1973).

    Google Scholar 

  7. BRISSAUD A., FRISCH U., “Solving linear stochastic differential equations”, J. Math. Phys., Vol. 15, Ni 4, (pp1974).

    Google Scholar 

  8. BUCY R.S., JOSEPH P.D., “Filtering for stochastic processes with applications to guidance”, Inters. Tracks in pure and applied Math., Wiley, (1968).

    Google Scholar 

  9. CAUGHEY T.K., “On the response of non linear oscillators to stochastic excitation”, Probabilistic engineering mechanics, (1)1, March (1986).

    Google Scholar 

  10. CAUGHEY T.K., “Non linear theory of random vibrations”, Advances in applied mechanics, vol. 11, pp. 209–253 (1971).

    Google Scholar 

  11. CAUGHEY T.K. and F. Ma, “The steady-state response of a class of dynamical system to stochastic excitation”, Journal of Applied Mechanics, Vol. 49, pp. 622–632, September, (1982).

    Google Scholar 

  12. CAUGHEY T.K., “Equivalent linearization techniques”, J. Acoust. Soc. Amer., Vol. 35, pp. 1706–1711, (1963).

    Google Scholar 

  13. CAUGHEY T.K., “Derivation and application of the Fokker-Planck equation to discrete nonlinear dynamic systems subjected to white random excitation”, J. of Acous. Soc. Amer. Vol. 35, ni 11, (1963).

    Google Scholar 

  14. CHEN K.K. and SOONG T.T., “Covariance-properties of waves propagating in a random medium”, J. Acoust. Soc. Amer., 49, pp. 1639–1642, (1971).

    Google Scholar 

  15. CLOUGH R.W. and PENZIEN J., “Dynamic of structures”, McGraw-Hill, New York, (1975).

    Google Scholar 

  16. CRAMER H. and LEADBETTER M.R., “Stationary and related stochastic processes”. John Wiley and Sons, New York, (1967).

    Google Scholar 

  17. CRANDALL S.H., “Perturbation technique for random vibration of nonlinear system”, J. Acoust. Soc. Amer., Vol 35, ni 11, (1963).

    Google Scholar 

  18. CRANDALL S.H., “Random vibration of systems with non linear restoring forces”, AFOSR, 708, June, (1961).

    Google Scholar 

  19. CRANDALL S.H., MARK D.W., “Random vibration in mechanical systems”, Academic Press, New York, (1973).

    Google Scholar 

  20. DOOB J.L., “Stochastic processes”, John Wiley and Sons, New York, (1967).

    Google Scholar 

  21. FRIEDMAN A., “Stochastic differential equations and applications”, Vol. 1 and 2, Academic Press, New York, (1975).

    Google Scholar 

  22. GUIKHMAN L. and SKOROKHOD A.V., “The theory of stochastic processes”, Springer Verlag, Berlin, (1979).

    Google Scholar 

  23. HARRIS C.J., “Simulation of multivariate nonlinear stochastic system”, Int. J. for Num. Meth. in Eng., Vol. 14, pp. 37–50, (1979).

    Google Scholar 

  24. HASMINSKII R.Z., “Stochastic stability of differential equations”, Sijthoff and Noordhoff, (1980).

    Google Scholar 

  25. HASMINSKII R.Z., “A limit theorem for the solutions of differential equations with random right-hand sides”, Theory of probability and applications, 11(3), pp. 390–405, (1966).

    Google Scholar 

  26. HILLE E., PHILLIPS R.S., “Functional analysis and semi-groups”, Amer. Math. Soc., Providence, Rhode Island, (1957).

    Google Scholar 

  27. HORMANDER L., “Hypoelliptic second order differential equations”, Acta Math. 119, pp. 147–171, (1967).

    Google Scholar 

  28. IKEDA N., WATANABE S., “Stochastic differential equations and diffusion processes”, North Holland, (1981).

    Google Scholar 

  29. ITO K., “On stochastic differential equations”, Memoir. Amer. Math. Soc., 14, (1961).

    Google Scholar 

  30. ITO K., MCKEAN H.P., “Diffusion processes and their sample paths”, SpringerVerlag, Berlin (1965).

    Google Scholar 

  31. IWAN W.D., “A generalization of the concept of equivalent linearization”, Int. J. Non linear Mechanics, 5, pp. 279–287, Pergamon Press, (1973).

    Google Scholar 

  32. IWAN W.D., SPANOS P.T., “Response envelope statistics for nonlinear oscillators with random excitation”, J. of Applied Mechanics, 45, (1978).

    Google Scholar 

  33. JAZWINSKI A.H., “Stochastic processes and filtering theory”, Academic Press, New York (1971).

    Google Scholar 

  34. JENKINS G.M., WATT D.G., “Spectral analysis and its applications”, Holden Day, San Francisco, (1968).

    Google Scholar 

  35. KALMAN R.E., BUCY R.S., “New results in linear filtering and prediction theory”, Trans. ASME, (1961).

    Google Scholar 

  36. KATO T., “Perturbation theory for linear operators”, Springer, N.Y., (1966).

    Google Scholar 

  37. KENDALL M.G., STUART A., “The advanced theory of statistics”, Griffin, London, (1966).

    Google Scholar 

  38. KOZIN F., “On the probability densities of the output of some random systems”, J. Appl. Mech., 28, pp. 161–165, (1961).

    Google Scholar 

  39. KOZIN F., “A survey of stability of stochastic systems”, Automatica Int. J. Control Automation, 5, pp. 95–112, (1969).

    Google Scholar 

  40. KREE P., “Markovianization of random vibrations”, L. Arnold and P. Kotelenez eds. Stochastic Space time models and limit theorems, pp. 141–162, Reidel, (1985).

    Google Scholar 

  41. KREE P., “Diffusion equation for multivalued stochastic differential equations”, J. of Functional Analysis, 49, nb 1, (1982).

    Google Scholar 

  42. KREE P., “Realization of gaussian random fields”, Journal of Math. Phys. 24(11), November, pp. 2573–2580, (1983).

    Google Scholar 

  43. KREE P. and SOME C., “Markovianization of random oscillators with colored input”, Rend. Sem. Math. Univer. Politech. Torino, Editrice Levretto Bella, Torino, (1982).

    Google Scholar 

  44. KREE P. and SOME C., “Mathematics of random phenomena”, Reidel publishing company, Dordrecht, Holland, (1986).

    Google Scholar 

  45. KUSHNER H.J., “Stochastic stability and control”, Academic Press, N.Y., (1967).

    Google Scholar 

  46. LIN Y.K., “Some observations of the stochastic averaging method”, Probabilistic engineering mechanics, vol. 1, ni 1, March (1986).

    Google Scholar 

  47. LIN Y.K., “Probabilistic theory of structural dynamics”, Mc Grax-Hill, New York, (1968).

    Google Scholar 

  48. LIU S.C., “Solutions of Fokker-Planck equation with applications in nonlinear random vibrations”, Bell System Tech. J., 48, pp. 2031–2051, (1969).

    Google Scholar 

  49. MCKEAN H.P., “Stochastic integrals”, Academic Press, New York, (1969).

    Google Scholar 

  50. NAHI N.E., “Estimation theory and applications”, John Wiley, New York, (1969).

    Google Scholar 

  51. PAPANICOLAOU G.C., KOHLER W., “Asymptotic theory of mixing stochastic ordinary differential equations”, Communication Pure and Applied Math., 27, (1974).

    Google Scholar 

  52. PARDOUX E., PIGNOL M., “Etude de la stability d'une EDS bilinéaire á coefficients périodiques”, in analysis and optimization of systems, part 2, A. Bensoussan and J.L. Lions Eds., Lecture Notes in Control and Information Sciences, 63, pp. 92–103, Springer-Verlag, (1984).

    Google Scholar 

  53. PHILLIPS R.S., SARASON LL., “Elliptic parabolic equations of the second order”, J. Math. Mech., 17, pp. 891–917, (1967).

    Google Scholar 

  54. ROBERTS J.B., “First passage probability for nonlinear oscillators”, J. of the Eng. Mechan. Division EM5, october, (1976).

    Google Scholar 

  55. ROBERTS J.B., “Transient response of nonlinear systems to random excitation”, J. of Sound and Vibration, 74, pp. 11–29, (1981).

    Google Scholar 

  56. ROBERTS J.B., “Energy methods for nonlinear systems with non-white excitation”, Proceedings of the IUTAM Symposium on random vibrations and reliability, Frankfurt/Oder, (1982).

    Google Scholar 

  57. ROBERTS J.B., “Response of an oscillator with nonlinear damping and a softening spring to non-white random excitation”, Probabilisitic engineering mechanics, vol. 1, ni 1, march (1986).

    Google Scholar 

  58. ROBERTS J.B., “The energy envelope of a randomly excited nonlinear oscillator” JSV, 60 (2), pp. 177–185, (1978).

    Google Scholar 

  59. ROZANOV Y.A., “Stationary random processes”, Holden Day, San Francisco, (1967).

    Google Scholar 

  60. SANCHO N.G.F., “On the approximate mement equations of a nonlinear stochastic differential equation”, J. Math. Anal. Appl., 29, pp. 384–391, (1970).

    Google Scholar 

  61. SCHMIDT G., “Stochastic problems in dynamics”, Eds. B.L. Clarkson, Pitman, London, (1977).

    Google Scholar 

  62. SHINOZUKA M., WEN Y.K., “Monte Carlo solution of nonlinear vibratins”, AIAAJ., vol. 10, ni 1, pp. 37–40, (1972).

    Google Scholar 

  63. SHINOZUKA M., “Time space domain analysis in the structural reliability assessment”, Second Inter. Conf. on Struct. Safety and Reliab., ICOSSAR 77, Munich, (1977).

    Google Scholar 

  64. SHINOZUKA M., “Simulation of multivariate and multidimensional random processes”, J. Account. Soc. Amer., Vol. 49, ni 1, part 2, pp. 357–367, (1971).

    Google Scholar 

  65. SHINOZUKA M., JAN C.M., “Digital simulation of random processes and its applications”, J. of Sound and Vibration, 25, pp. 111–128, (1972).

    Google Scholar 

  66. SHINOZUKA M., “Monte Carlo solution of structural dynamics”, J. Computer and Structures, Vol. 2, pp. 855–874, (1972).

    Google Scholar 

  67. SINITSYN I.N., “Methods of statistical linearization”, Automation and remote control, vol. 35, pp. 765–776, (1974).

    Google Scholar 

  68. SKOROHOD A.V., “Studies in the theory of random processes”, Addisa-Wesley, Reading, Massachusetts, (1965).

    Google Scholar 

  69. SOME C., DAVID J.M., DESANTI A., “Functional reduction of stochastic fields for studying stationary random vibrations”, ONERA, J. Rech. Aerosp., ", (1986).

    Google Scholar 

  70. SOME C., “Markovianization of sea waves and applications”, Journée de mécanique aléatoire, AFREM, Paris, in french, (1984).

    Google Scholar 

  71. SOONG T.T., “Random differential equations in science and engineering”, Academic Press, New York, (1973).

    Google Scholar 

  72. SPANOS P.D.T., “Stochastic linearization in structural dynamics”, Applied Mech. Reviews, Vol. 34, nb 1, (1981).

    Google Scholar 

  73. SPANOS P.D.T., “Monte Carlo simulations of responses of a non-symmetric dynamic systems to random excitations”, J. Computer and Structures, 13, Pergamon Press, (1981).

    Google Scholar 

  74. SPANOS P.D.T., “Approximate analysis of random vibration through stochastic averaging”, in Proceedings of IUTAM Symposium on random vibrations and reliability, Frankfurt/Oder, (1982).

    Google Scholar 

  75. STRAND J.L., “Random ordinary differential equations”, J. Differential Equations, 7, pp. 538–553, (1970).

    Google Scholar 

  76. STRATONOVICH R.L., “Topics in the theory of random noise”, Gordon and Breach, New York, (1963).

    Google Scholar 

  77. STRATONOVICH R.L., “A new representation for stochastic integrals”, J. SIAM control, Vol. 4, ni 2, (1966).

    Google Scholar 

  78. STRATONOVICH R.L., “Conditional Markov processes and their application to theory of optimal control”, Amer. Elsevier, New York, (1968).

    Google Scholar 

  79. VAN KAMPEN N.G., “A cumulant expansion for stochastic linear differential equations I”, Physica, 74, pp. 215–238, North-Holland, (1974).

    Google Scholar 

  80. Van KAMPEN N.G., “Stochastic differential equations”, Physics reports, Section C of Physics Letters, 24, nb 3, pp. 171–228, North-Holland, (1976).

    Google Scholar 

  81. WEN Y.K., “Equivalent linearization for hysteretic systems under random excitation”, Trans. of ASME, 47, pp. 150–154, (1980).

    Google Scholar 

  82. WEN Y.K., “Approximate method for nonlinear random vibration", J. of the Eng. Mechan. Div., EM4, (1975).

    Google Scholar 

  83. WILCOX R.M., BELLMAN R., “Truncation and preservation of moment properties for Fokker-Planck moment equations”, J. Math. Anal. Appl., 32, pp. 532–542, (1970).

    Google Scholar 

  84. YOSIDA K., “Functional analysis”, Third edition, Springer Verlag, (1971).

    Google Scholar 

Download references

Authors

Editor information

Paul Krée Walter Wedig

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this paper

Cite this paper

Soize, C. (1995). Exact steady-state solution of FKP equation in higher dimension for a class of non linear Hamiltonian dissipative dynamical systems excited by Gaussian white noise. In: Krée, P., Wedig, W. (eds) Probabilistic Methods in Applied Physics. Lecture Notes in Physics, vol 451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60214-3_61

Download citation

  • DOI: https://doi.org/10.1007/3-540-60214-3_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60214-9

  • Online ISBN: 978-3-540-44725-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics