Skip to main content

Lyapunov exponents indicate stability and detect stochastic bifurcations

  • Stability-Lyapunov Exponents and Stochastic Bifurcation
  • Conference paper
  • First Online:
Probabilistic Methods in Applied Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 451))

  • 277 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, L.: Stochastic differential equations: theory and applications. Wiley, New York 1974.

    Google Scholar 

  2. Arnold, L., Kliemann, W.: Large deviations of linear stochastic differential equations. In: Engelbert (ed.): Proceedings of the Fifth IFIP Working Conference Eisenach, GDR 1986. Lecture Notes in Control and Information Sciences. Springer, Berlin, Heidelberg, New York, Tokyo 1987.

    Google Scholar 

  3. Arnold, L., Kliemann, W.: Qualitative theory of stochastic systems. In: A. T. Bharucha-Reid (ed.): Probabilistic analysis and related topics, vol. 3. Academic Press, New York 1981.

    Google Scholar 

  4. Arnold, L., Kliemann, W., Oeljeklaus, E.: Lyapunov exponents of linear stochastic systems. Proceedings of a workshop Bremen 1984. Lecture Notes in Mathematics vol. 1186. Springer, Berlin, Heidelberg, New York, Tokyo 1986.

    Google Scholar 

  5. Arnold, L., Kloeden, P.: Lyapunov exponents and rotation number of two-dimensional systems with telegraphic noise. Report No. 189, Institut für Dynamische Systeme, Universität Bremen 1988.

    Google Scholar 

  6. Arnold, L., Oel jeklaus, E., Pardoux, E.: Almost sure and moment stability for linear Ito equations. Proceedings of a workshop Bremen 1984. Lecture Notes in Mathematics vol. 1186. Springer, Berlin, Heidelberg, New York, Tokyo 1986.

    Google Scholar 

  7. Arnold, L., Papanicolaou, G., Wihstutz, V.: Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator. SIAM J. Appl. Math. 46 (1986), 427–450.

    Google Scholar 

  8. Arnold, L., San Martin, L.: A multiplicative ergodic theorem for rotation numbers. Dynamics and Differential Equations 1(1988).

    Google Scholar 

  9. Boxler, P.: Stochastic center manifolds as a tool in a stochastic bifurcation theory. This volume.

    Google Scholar 

  10. Boxier, P.: Stochastische Zentrumsmannigfaltigkeiten. Ph. D. thesis, Institut für Dynamische Systeme, Universität Bremen 1988. (Condensed English version of [10]: Boxler, P.: A stochastic version of the center manifold theorem. Report No. 174, Institut für Dynamische Systeme, Universität Bremen 1988.)

    Google Scholar 

  11. Carverhill, A.: Flows of stochastic dynamical systems: ergodic theory. Stochastics 14 (1985), 273–317.

    Google Scholar 

  12. Coddington, E. A., Levinson, N.: Theory of ordinary differential equations. Tata McGraw-Hill, New Delhi, 8th ed. 1985.

    Google Scholar 

  13. Crauel, H.: Ergodentheorie linearer stochastischer Systeme. Report No. 59, Institut für Dynamische Systeme, Universität Bremen 1981.

    Google Scholar 

  14. Graham, R., Schenzle, A.: Stabilization by multiplicative noise. Phys. Rev. A 26,1676 (1982).

    Google Scholar 

  15. Guckenheimer, J., Holmes, Ph.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, Berlin, Heidelberg, New York, Tokyo, 2nd ed. 1986.

    Google Scholar 

  16. Has'minskĩi, R. Z.: Stochastic stability of differential equations. Sijthoff and Noordhoff, Al phen 1980.

    Google Scholar 

  17. Horsthemke, W., Lefever, R.: Noise-induced transitions. Springer, Berlin, Heidelberg, New York, Tokyo 1984.

    Google Scholar 

  18. Knobloch, H. W., Kappel, F.: Gewohnliche Differentialgleichungen. Teubner, Stuttgart 1974.

    Google Scholar 

  19. Knobloch, E., Wiesenfeld, K. A.: Bifurcations in fluctuating systems: The centermanifold approach. J. Stat. Phys., Vol. 33, no. 3 (1983), 611–637.

    Google Scholar 

  20. Kozin, F.: Stability of linear stochastic systems. In: R. Curtain (ed.): Stability of stochastic dynamical systems. Lecture Notes in Mathematics vol. 294. Springer, Berlin, Heidelberg, New York 1972.

    Google Scholar 

  21. Kunita, H.: Stochastic differential equations and stochastic flows of difeomorphisms. Ecole d'été de Probabilités de Saint-Flour XII-1982, 143–303. Lecture Notes in Mathematics vol. 1097. Springer, Berlin, Heidelberg, New York, Tokyo 1984.

    Google Scholar 

  22. Lyapunov, A. M.: Problème générale de la stabilité du mouvement. Comm. Soc. Math. Kharkov 2 (1892), 3 (1893), 265–272. Ann. Fac. Sci. Toulouse 9 (1907), 204–474. Reprint: Ann. of Math Stu dies 17, Princton University Press, Princtou 1949.

    Google Scholar 

  23. Mañé R.: Ergodic theory and differentiable dynamics. Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo 1987.

    Google Scholar 

  24. Oseledec, V. I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197–23 1.

    Google Scholar 

  25. Pardoux, E., Wihstutz, V.: Lyapunov exponent and rotation number of two dimensional linear stochastic systems with small diffusion. SIAM J. Appl. Math. 48, No. 2 (1988), 4 42–457.

    Google Scholar 

  26. Pinsky, M., Wihstutz, V.: Lyapunov exponents of nilpotent Ito-systems. Report No. 177, Institut für Dynamische Systeme, Universität Bremen 1987.

    Google Scholar 

  27. Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publ. Math. I.H.E.S. 50 (1979), 27–58.

    Google Scholar 

  28. Stratonovich, R. L.: Topics in the theory of random noise, vol. 1. Gordon and Breach, New York 1963.

    Google Scholar 

  29. Talay, D.: Simulation and numerical analysis of stochastic differential equations. This volume.

    Google Scholar 

  30. Wedig, W.: Stochastic bifurcation of nonlinear parametric systems. This volume.

    Google Scholar 

Download references

Authors

Editor information

Paul Krée Walter Wedig

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this paper

Cite this paper

Boxler, P. (1995). Lyapunov exponents indicate stability and detect stochastic bifurcations. In: Krée, P., Wedig, W. (eds) Probabilistic Methods in Applied Physics. Lecture Notes in Physics, vol 451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60214-3_52

Download citation

  • DOI: https://doi.org/10.1007/3-540-60214-3_52

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60214-9

  • Online ISBN: 978-3-540-44725-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics