Advertisement

Random matrices of circular symplectic ensemble

  • Karol Zyczkowski
Part II: Seminars
Part of the Lecture Notes in Physics book series (LNP, volume 457)

Abstract

Random unitary matrices of symplectic ensemble describe statistical properties of time-dependent, periodical quantum systems with a halfinteger spin. We present a method of constructing random matrices typical to circular symplectic ensemble and show that the numerically generated unitary symplectic matrices display statistical properties of spectrum and eigenvectors according to the predictions of the random matrix theory.

Keywords

Random Matrice Unitary Matrice Integer Spin Quaternion Matrix Level Repulsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Bohigas, in: Chaos and Quantum Physics, Les-Houches Session L111989, edited by M.J. Giannoni and A. Voros, North-Holland, Amsterdam, 1991.Google Scholar
  2. 2.
    F. Haake, Quantum Signatures of Chaos, Springer, Berlin, 1991.Google Scholar
  3. 3.
    M.L. Mehta, Random Matrices 2nd edn. (Academic Press, New York, 1990)Google Scholar
  4. 4.
    F.J. Dyson, J. Math. Phys. 3, 140 (1962).Google Scholar
  5. 5.
    R. Blümel and U.Smilansky, Phys. Rev. Lett. 64, 241 (1990).Google Scholar
  6. 6.
    R. Scharf, B. Dietz, M. Kuś, F. Haake and M.V. Berry, Europhys. Lett. 5, 383 (1988).Google Scholar
  7. 7.
    R. Scharf, J.Phys. A22, 4223 (1989).Google Scholar
  8. 8.
    M. Thaha, R. Blümel and U. Smilansky, Phys. Rev. E48, 1764 (1993).Google Scholar
  9. 9.
    A. Hurwitz, Nachr. Ges. Wiss. Gött. Math.-phys. Kl. 71, (1897).Google Scholar
  10. 10.
    K. Zyczkowski and M. Kuś, J. Phys. A27, 4235 (1994).Google Scholar
  11. 11.
    T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey and S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981).Google Scholar
  12. 12.
    C.E. Porter, Statistical Theories of Spectra: Fluctuations, edited by C.E. Porter (Academic Press, New York, 1965).Google Scholar
  13. 13.
    F. Haake and K. Życzkowski, Phys. Rev. A42, 1013 (1990).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Karol Zyczkowski
    • 1
  1. 1.Instytut Fizyki im. M. SmoluchowskiegoUniwersytet JagielloińskiKrakówPoland

Personalised recommendations