Skip to main content

Lévy-Stable and extreme value distributions in modelling of dynamical phenomena in complex physical systems

  • Part II: Seminars
  • Conference paper
  • First Online:
Chaos — The Interplay Between Stochastic and Deterministic Behaviour

Part of the book series: Lecture Notes in Physics ((LNP,volume 457))

Abstract

Two examples of physical phenomena, dielectric relaxations and turbulent flows, where the Lévy-stable and extreme value distributions appear naturally, are considered. In the case of dielectric relaxations the common mathematical structure underlying four different definitions of relaxation function, responsible for generating the stretched exponential relaxation law, is found. In the case of turbulent flows, the distribution of velocities in a velocity field produced by randomly distributed sources of circulation is shown to be Lévy-stable with the characteristic exponent \(\frac{D}{2}\), where D denotes the fractal dimension of the turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.Lévy, Calcul des Probabilitiés (Gauthier-Villars,Paris 1925).

    Google Scholar 

  2. J. Holtsmark, Ann. de Phys. 58 (1919).

    Google Scholar 

  3. T.V. Ramakrishnan and M. Raj Lakshmi, eds, Non-Debye Relaxations in Condensed Matter (World Scientific, Singapore, 1987).

    Google Scholar 

  4. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983).

    Google Scholar 

  5. S. Havriliak and S.J. Havriliak, J. Non-Cryst. Solids 172-174, 297 (1994).

    Google Scholar 

  6. H. Scher, M.F. Shlesinger, and J.T. Bendler, Physics Today 44, 26 (1991).

    Google Scholar 

  7. J. Klafter and M.F. Shlesinger, Proc. Natl. Acad. Sci. USA 83, 848 (1986).

    Google Scholar 

  8. R. Rammal, J. Physique 46, 1857 (1985).

    Google Scholar 

  9. K. Weron, J. Phys.: Condens. Matter 3, 9151 (1991).

    Google Scholar 

  10. K. Weron, J. Phys.: Condens. Matter 4, 10507 (1992)

    Google Scholar 

  11. K. Weron and A. Jurlewicz, J. Phys. A: Math. Gen. 26, 395 (1993).

    Google Scholar 

  12. L.A. Dissado and R.M. Hill, Proc. Roy. Soc. A 390, 131 (1983).

    Google Scholar 

  13. V. Frisk, P.L. Sulem, and M.A. Nelkin, J, Fluid Mech. 87, 719 (1978).

    Google Scholar 

  14. H. Fujisaka and H. Mori, Prog. Theor. Phys. 67, 54 (1979).

    Google Scholar 

  15. H.G.E. Hentschel and J. Procaccia, Phys. Rev. Lett. 49, 1158 (1982).

    Google Scholar 

  16. V.M. Zolotarev, One dimensional Stable Distributions (American Mathematical Society, Providence, R.J., 1986)

    Google Scholar 

  17. B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman & Co., San Francisco, 1982).

    Google Scholar 

  18. W. Feller, An Introduction to Probability and Its Applications, vol. 2 (Wiley, New York, 1966).

    Google Scholar 

  19. A. Weron, Stable Processes and Measures: A Survey, Lecture Notes in Math. 1391 (Springer, Berlin, 1984).

    Google Scholar 

  20. M.R. Leadbetter, G. Lindgren, and H. Rootzen, Extremes and Related Properties of Random Sequences and Processes (Springer, New York, 1986)

    Google Scholar 

  21. C.J. Bőttcher and P. Bordewijk, Theory of Electronic Polarisation, vol 2 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  22. A. Jurlewicz, A. Weron, and K. Weron, Appl.Math. to appear (1995)

    Google Scholar 

  23. J. Galambos, The Asymptotic Theory of Extreme Order Statistics, (Wiley, New York, 1978).

    Google Scholar 

  24. A. Weron, K.Weron, and A.W.Woyczynski, J. Stat. Phys. 78, 1027 (1995).

    Google Scholar 

  25. H. Takayasu, Prog. Theor. Phys. 72, 471 (1984).

    Google Scholar 

  26. A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, (MIT Press, Cambridge, 1975).

    Google Scholar 

  27. S. Kida, Prog. Theor. Phys. 67, 1630 (1982).

    Google Scholar 

  28. A. Janicki and A. Weron, Simulation of Chaotic Behavior of α-Stable Stochastic Processes (Marcel Dekker, New York, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Piotr Garbaczewski Marek Wolf Aleksander Weron

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this paper

Cite this paper

Weron, K., Kosmulski, K., Jurlewicz, A., Mercik, S. (1995). Lévy-Stable and extreme value distributions in modelling of dynamical phenomena in complex physical systems. In: Garbaczewski, P., Wolf, M., Weron, A. (eds) Chaos — The Interplay Between Stochastic and Deterministic Behaviour. Lecture Notes in Physics, vol 457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60188-0_82

Download citation

  • DOI: https://doi.org/10.1007/3-540-60188-0_82

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60188-3

  • Online ISBN: 978-3-540-44722-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics