Advertisement

Lévy-Stable and extreme value distributions in modelling of dynamical phenomena in complex physical systems

  • K. Weron
  • K. Kosmulski
  • A. Jurlewicz
  • S. Mercik
Part II: Seminars
Part of the Lecture Notes in Physics book series (LNP, volume 457)

Abstract

Two examples of physical phenomena, dielectric relaxations and turbulent flows, where the Lévy-stable and extreme value distributions appear naturally, are considered. In the case of dielectric relaxations the common mathematical structure underlying four different definitions of relaxation function, responsible for generating the stretched exponential relaxation law, is found. In the case of turbulent flows, the distribution of velocities in a velocity field produced by randomly distributed sources of circulation is shown to be Lévy-stable with the characteristic exponent \(\frac{D}{2}\), where D denotes the fractal dimension of the turbulence.

Keywords

Fractal Dimension Relaxation Rate Dielectric Relaxation Relaxation Function Stable Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.Lévy, Calcul des Probabilitiés (Gauthier-Villars,Paris 1925).Google Scholar
  2. 2.
    J. Holtsmark, Ann. de Phys. 58 (1919).Google Scholar
  3. 3.
    T.V. Ramakrishnan and M. Raj Lakshmi, eds, Non-Debye Relaxations in Condensed Matter (World Scientific, Singapore, 1987).Google Scholar
  4. 4.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983).Google Scholar
  5. 5.
    S. Havriliak and S.J. Havriliak, J. Non-Cryst. Solids 172-174, 297 (1994).Google Scholar
  6. 6.
    H. Scher, M.F. Shlesinger, and J.T. Bendler, Physics Today 44, 26 (1991).Google Scholar
  7. 7.
    J. Klafter and M.F. Shlesinger, Proc. Natl. Acad. Sci. USA 83, 848 (1986).Google Scholar
  8. 8.
    R. Rammal, J. Physique 46, 1857 (1985).Google Scholar
  9. 9.
    K. Weron, J. Phys.: Condens. Matter 3, 9151 (1991).Google Scholar
  10. 10.
    K. Weron, J. Phys.: Condens. Matter 4, 10507 (1992)Google Scholar
  11. 11.
    K. Weron and A. Jurlewicz, J. Phys. A: Math. Gen. 26, 395 (1993).Google Scholar
  12. 12.
    L.A. Dissado and R.M. Hill, Proc. Roy. Soc. A 390, 131 (1983).Google Scholar
  13. 13.
    V. Frisk, P.L. Sulem, and M.A. Nelkin, J, Fluid Mech. 87, 719 (1978).Google Scholar
  14. 14.
    H. Fujisaka and H. Mori, Prog. Theor. Phys. 67, 54 (1979).Google Scholar
  15. 15.
    H.G.E. Hentschel and J. Procaccia, Phys. Rev. Lett. 49, 1158 (1982).Google Scholar
  16. 16.
    V.M. Zolotarev, One dimensional Stable Distributions (American Mathematical Society, Providence, R.J., 1986)Google Scholar
  17. 17.
    B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman & Co., San Francisco, 1982).Google Scholar
  18. 18.
    W. Feller, An Introduction to Probability and Its Applications, vol. 2 (Wiley, New York, 1966).Google Scholar
  19. 19.
    A. Weron, Stable Processes and Measures: A Survey, Lecture Notes in Math. 1391 (Springer, Berlin, 1984).Google Scholar
  20. 20.
    M.R. Leadbetter, G. Lindgren, and H. Rootzen, Extremes and Related Properties of Random Sequences and Processes (Springer, New York, 1986)Google Scholar
  21. 21.
    C.J. Bőttcher and P. Bordewijk, Theory of Electronic Polarisation, vol 2 (Elsevier, Amsterdam, 1978).Google Scholar
  22. 22.
    A. Jurlewicz, A. Weron, and K. Weron, Appl.Math. to appear (1995)Google Scholar
  23. 23.
    J. Galambos, The Asymptotic Theory of Extreme Order Statistics, (Wiley, New York, 1978).Google Scholar
  24. 24.
    A. Weron, K.Weron, and A.W.Woyczynski, J. Stat. Phys. 78, 1027 (1995).Google Scholar
  25. 25.
    H. Takayasu, Prog. Theor. Phys. 72, 471 (1984).Google Scholar
  26. 26.
    A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, (MIT Press, Cambridge, 1975).Google Scholar
  27. 27.
    S. Kida, Prog. Theor. Phys. 67, 1630 (1982).Google Scholar
  28. 28.
    A. Janicki and A. Weron, Simulation of Chaotic Behavior of α-Stable Stochastic Processes (Marcel Dekker, New York, 1994).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • K. Weron
    • 1
  • K. Kosmulski
    • 1
  • A. Jurlewicz
    • 2
  • S. Mercik
    • 2
  1. 1.Institute of PhysicsTechnical University of WroclawWrocławPoland
  2. 2.Hugo Steinhaus Center for Stochastic MethodsTechnical University of WroclawWrocławPoland

Personalised recommendations