Advertisement

Asymptotic behavior of generalized Levy walks

  • Marcin Kotulski
Part II: Seminars
Part of the Lecture Notes in Physics book series (LNP, volume 457)

Abstract

We propose a generalization of Lévy walk in one dimension allowing for an arbitrary bias and asymmetry of jumps. An asymptotic distribution (propagator) of distance R(t) reached up to time t by a particle initially at the origin is found to be a possibly asymmetric Lévy-stable law s α,β (τ) or a positive law hλ(xx). A probabilistic approach in terms of random variables R; and T i is applied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).Google Scholar
  2. 2.
    J. Klafter, A. Blumen and M. F. Shlesinger, Phys. Rev. A 35, 3081 (1987).Google Scholar
  3. 3.
    G. Zumofen, J. Klafter and A. Blumen, Phys. Rev. E 47, 2183 (1993).Google Scholar
  4. 4.
    G. Zumofen, J. Klafter and A. Blumen, Chem. Phys. 146, 433 (1990).Google Scholar
  5. 5.
    R. N. Mantegna, J. Stat. Phys. 70, 721 (1993).Google Scholar
  6. 6.
    M. Kotulski, to appear in J. Stat. Phys. (1995).Google Scholar
  7. 7.
    A. Janicki and A. Weron, Simulation and Chaotic Behavior of α-Stable Stochastic Processes, (Marcel Dekker, New York, 1994).Google Scholar
  8. 8.
    V. M. Zolotarev, One-dimensional Stable Distributions, (AMS, 1986).Google Scholar
  9. 9.
    H. Wittenberg, Z. Wahrschein. verw. Geb. 3, 7 (1964)Google Scholar
  10. 10.
    M. Csorgo and Z. Rychlik, Canadian J. Statis. 9, 101 (1981), Theorem 3.Google Scholar
  11. 11.
    D. J. Aldous, Math. Proc. Cambridge Phil. Soc. 83, 117 (1978), Theorem 7.Google Scholar
  12. 12.
    W. Feller, An introduction to Probability Theory and its Applications, Vol. 2, (Wiley, New York, 1966)Google Scholar
  13. 13.
    J. K. E. Tunaley, J. Stat. Phys. 12, 1 (1975); 11, 397 (1974).Google Scholar
  14. 14.
    H. Weissman, G. H. Weiss and S. Havlin, J. Stat. Phys. 57, 301 (1989).Google Scholar

Copyright information

© Springer-Verl 1995

Authors and Affiliations

  • Marcin Kotulski
    • 1
  1. 1.Hugo Steinhaus Center for Stochastic MethodsTechnical University of WroclawWroclawPoland

Personalised recommendations