p-adic stochastics with applications to the Einstein-Podolsky-Rosen Paradox

  • Andrew Khrennikov
Part II: Seminars
Part of the Lecture Notes in Physics book series (LNP, volume 457)


In the last years much attention has been paid to p-adic quantum models (especially, in string theory). As usual, new physical models generate new mathematical methods. In our case there appears a new type of stochastics, the p-adic stochastics, which arises within the so called p-adic quantum physics. We apply this stochastics to propose a justification of the Einstein-Podolsky-Rosen theory of hidden variables, which was in contradiction with Bell's type inequality. Our main result is: if we consider the p-adic probability distribution of hidden variables, then no problems appears with the Bell inequality.


Rational Number Hide Variable Bell Inequality Negative Probability Adic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Eistein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777–780 (1935).Google Scholar
  2. 2.
    J.S. Bell, Physics 1, 195–200 (1965).Google Scholar
  3. 3.
    J.F. Clauser, A. Shimony, Rep. Progr. Phys. 41, 1881–1927 (1978).Google Scholar
  4. 4.
    V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, p-adic numbers in mathematical physics. World Sc. Publ., Singapore, 1993.Google Scholar
  5. 5.
    A.Yu. Khrennikov, p-adic valued distributions in mathematical physic. Kluwer Academic Publ., Dordrecht-London, 1994.Google Scholar
  6. 6.
    I.V. Volovich, Classical Quantum Grav. 4, L83–L87 (1987).Google Scholar
  7. 6.b
    P.G.O. Freund and M. Olson, Phys. Lett. B199, 186–190 (1987).Google Scholar
  8. 7.
    W. Schikhof, Ultrametric Calculus. Cambridge Studies in Adv. Math. 4. Cambridge U.P. Cambridge, 1984.Google Scholar
  9. 8.
    A.Yu. Khrennikov, Russian Math. Surveys 45, 87–125 (1990).Google Scholar
  10. 8.b
    A.Yu. Khrennikov, J. Math. Phys. 32, 932–937 (1991).Google Scholar
  11. 9.
    A.Yu. Khrennikov, Sov. Phys. Dokl. 37 (1992). A.Yu. Khrennikov, Probability interpretation of the p-adic valued quantum theories, Symposium on the Foundations of Modern Physics, Helsinki, June 1994, Abstracts, 134.Google Scholar
  12. 10.
    A.N. Kolmogoroff Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin, 1933. English translation by N. Morrison, New-York (1950).Google Scholar
  13. 11.
    R. von Mises: The Mathematical Theory of Probability and Statistics. Academic, London, 1964.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Andrew Khrennikov
    • 1
  1. 1.Institut für MathematikRuhr-Universität BochumBochumGermany

Personalised recommendations