Stochastic approach to many bosons physics

  • Roman Gielerak
  • Robert Olkiewicz
Part II: Seminars
Part of the Lecture Notes in Physics book series (LNP, volume 457)


The modular structure of the free Bose gas is completely described by a Gaussian periodic OS-positive generalized Markov process with values in S′(Rd). Methods of Euclidean quantum field theory are applied to study some Gibbsian perturbations of the corresponding free Bose gas stochastic thermal structures leading to constructions of some modular structures which describe interacting Bosons in the thermal equilibrium. In particular it is shown that certain perturbations of the free Bose gas in the critical regime of couplings preserve nonergodicity and this phenomenon seems to be connected to the preservation of the Bose-Einstein condensate in the interacting system.


Thermal Field Gibbs Measure Modular Structure Stochastic Approach Weyl Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Bratelli and O.W. Robinson, Operator Algebra and QSM II, Springer, New York, 1981, and refs therein.Google Scholar
  2. 2.
    Y.M. Park, J. Stat. Phys. 40, 259 (1985).Google Scholar
  3. 3.
    D. Brydges, P. Federbush, Comm. Math. Phys. 53, 19 (1977), and refs therein.Google Scholar
  4. 4.
    M. van der Berg, J.T. Lewis, Helv. Phys. Acta 59, 1271 (1988) and refs therein.Google Scholar
  5. 5.
    G. Benfatto, G. Gallavotti, A. Procacci, B. Scoppola, Comm. Math. Phys. 160, 93 (1994)Google Scholar
  6. 5. a
    J. Feldman, J. Mangan, V. Rivasseau, E. Trubowitz, Helv. Phys. Acta, 65, 679 (1992).Google Scholar
  7. 6.
    S. Sakai, Operator Algebras in Dynamical Systems: the theory of unbounded derivations in C* Algebras, Cambridge Univ. Press, Cambridge, 1991.Google Scholar
  8. 7.
    J. Glimm, A. Jaffe, Quantum Physics: A Functional Integral Point of view, Springer, 1981.Google Scholar
  9. 8.
    R. Gielerak, L. Jakóbczyk, R. Olkiewicz JMP 35, 3726 (1994)Google Scholar
  10. 8 a.
    R. Gielerak, L. Jakóbczyk, R. Olkiewicz JMP 35, 6291 (1994).Google Scholar
  11. 9.
    R. Gielerak, R. Olkiewicz, BiBoS preprint, 1994, to appear in Journ. Stat. Phys. 1995.Google Scholar
  12. 10.
    R. Gielerak, R. Olkiewicz, papers in preparation.Google Scholar
  13. 11.
    J. Fröhlich, Y.M. Park, Comm. Math. Phys. 57, 235 (1978)Google Scholar
  14. 11 a.
    J. Fröhlich, Y.M. Park, Journ. Stat Phys. 23, 701 (1980). *** DIRECT SUPPORT *** A3418380 00008Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Roman Gielerak
    • 1
  • Robert Olkiewicz
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of WroclawWroclawPoland

Personalised recommendations