Advertisement

From quantum physics to probability theory and back

  • J. C. Zambrini
Part I: Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 457)

Keywords

Transition Element Integral Kernel Semiclassical Limit Path Space Part Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Carlen, “Progress and Problems in Stochastic Mechanics,” in XXIV Karpacz Winter School: “Stochastic methods in Mathematics and Physics,” Edit. R. Gielerak and W. Yrarwowski, World Scientific Publis. (1989).Google Scholar
  2. 2.
    E. Schrödinger, Ann. Inst. H. Poincaré 2, 269 (1932).Google Scholar
  3. 3.
    R. Feynman, Rev. Mod. Phys. 20, 367 (1948)Google Scholar
  4. 3a.
    R. Feynman, A. R. Hibbs, “Quantum Mechanics and Path Integrals,” McGraw-Hill, N. Y. (1965).Google Scholar
  5. 4.
    E. Nelson, J. Math. Phys. 5, 332 (1964)Google Scholar
  6. 4a.
    S. Albeverio, R. Høegh-Krohn, “Mathematical Theory of Feynman Path Integrals,” Lect. Notes in Mathematics no. 523, Springer-Verlag (1976).Google Scholar
  7. 5.
    M. C. Gutzwiller, “Chaos in Classical and Quantum Mechanics,” Springer-Verlag (1990).Google Scholar
  8. 6.
    K. Yasue, J. of Functional Analysis 41, 327 (1981).Google Scholar
  9. 7.
    Ph. Blanchard, Ph. Combe, W. Zheng, “Mathematical and Physical Aspects of Stochastic Mechanics,” Lect. Notes in Physics, 281, Springer-Verlag (1987).Google Scholar
  10. 8.
    J. C. Zambrini, J. of Mathematical Physics 27 (9), 2307 (1986).Google Scholar
  11. 9.
    M. Reed, B. Simon, “Methods of Modern Mathematical Physics,” II, Academic Press (N. Y.) (1975).Google Scholar
  12. 10.
    A. D. Wentzell, “A course in the theory of stochastic processes,” McGraw-Hill (1981).Google Scholar
  13. 11.
    M. Schechter, “Operator methods in Quantum Mechanics,” North Holland (1981).Google Scholar
  14. 12.
    R. H. Cameron, J. of Math. and Physics 39, 126 (1960).Google Scholar
  15. 13.
    L. S. Schulman, “Techniques and applications of path integration,” John Wiley & Sons, N. Y. (1981).Google Scholar
  16. 14.
    “Quantum theory and measurement,” J. A. Wheeler and W. H. Zurek Ed., Princeton University Press (1983).Google Scholar
  17. 15.
    P. Ramond, “Field Theory: a modern primer,” Benjamin Publ., Reading, Mass. (1981).Google Scholar
  18. 16.
    J. C. Zambrini, “New Probabilistic approaches to the classical heat equation” in Springer Lect. Notes in Math. no. 1325, A. Truman and I. M. Davies, Edit., Springer (1988).Google Scholar
  19. 17.
    A. Einstein, “Investigations on the theory of the Brownian Movement,” Edit. by R. Fürth, Dover N. Y. (1956).Google Scholar
  20. 18. 1)
    S. Bernstein, “Sur les liaisons entre les grandeurs aléatoires,” Verh. der Intern. Mathematikerkongr. Ziirich (1932) Band 1.Google Scholar
  21. 18. 2)
    R. Fortet, “Résolution d'un systeme d'équations de M. Schrödinger,” J. Math. Pures et Appl. IX, p. 83 (1940).Google Scholar
  22. 18. 3)
    A. Beurling, Annals of Mathematics Vol. 72 No. 1 p. 189 (1960).Google Scholar
  23. 19. 1)
    B. Jamison, Z. Wahrscheinlichkeitstheorie vern. Geb. 30, 65 (1974).Google Scholar
  24. 19. 2)
    B. Jamison, Z. Wahrscheinlichkeitstheorie vern. Geb. 32, 323 (1975).Google Scholar
  25. 20.
    N. Wiener, “Differentiable Space,” J. Math. Phys. 2, 131 (1923).Google Scholar
  26. 21.
    T. Kato, Isr. J. Math. 13, 135 (1973).Google Scholar
  27. 22.
    K. Osterwalder and R. Schrader, Commun. Math. Phys. 31, (1973); 42, (1975) 281.Google Scholar
  28. 23.
    A. B. Cruzeiro and J. C. Zambrini, “Euclidean Quantum Mechanics. An Outline” in A. I. Cardoso et al (eds.), “Stochastic Analysis and Applications in Physics,” Kluwer Academics, Boston, 59 (1994).Google Scholar
  29. 24.
    N. Ikeda and S. Watanabe, “Stochastic differential equations and diffusion processes,” 2th ed., North-Holland, Amsterdam (1989).Google Scholar
  30. 25.
    R. H. Cameron and W. T. Martin, Ann. of Math. 45, 386 (1944).Google Scholar
  31. 26.
    P. Malliavin, “Stochastic calculus of variations and hypoelliptic operators” in Proc. of Intern. Symp. Stochastic Differential Equations, “ Kyoto (1976) (K. Ito Edit.) Kinokuniya-Wiley, Tokyo (1978).Google Scholar
  32. 27.
    J. M. Bismut, ”Large deviations and the Malliavin calculus,“ Progress in Math., Birkhäuser, Boston (1984).Google Scholar
  33. 28.
    M. Kac, “On some connections between probability theory and differential and integral equations” in Proc. of 2th Berkeley Symp. on Prob. and Statistics, J. Neyman Ed., Univ. of California Press, Berkeley (1951).Google Scholar
  34. 29. 1)
    A. B. Cruzeiro, J. C. Zambrini, Journ. of Funct. Analysis, Vol. 96, No. 1, 62 (1991).Google Scholar
  35. 29. 2)
    A. B. Cruzeiro, J. C. Zambrini, “Feynman's Functional Calculus and Stochastic Calculus of Variations” in “Stochastic Analysis and Applications” edit. by A. B. Cruzeiro and J. C. Zambrini, Progress in Probability, Vol. 26, 83 Birkhäuser, Boston (1991).Google Scholar
  36. 30.
    E. Nelson, Physical Review 150, 1079 (1966).Google Scholar
  37. 31.
    M. Thieullen, Prob. Th. Rel. Fields 97, 231 (1993).Google Scholar
  38. 32.
    W. Heisenberg, Zeitschrift für Physik 43, 172 (1927) reprinted in “Quantum theory and measurement” Ed. by J. A. Wheeler, W. H. Zurek, Princeton Series in Physics, P. U. P., Princeton (1983).Google Scholar
  39. 33.
    E. Schrödinger, Annalen der Physik (4), 79, (1926).Google Scholar
  40. 34.
    W. H. Fleming, H. M. Soner, “Controlled Markov Processes and viscosity solutions,” Springer-Verlag, N. Y. (1993).Google Scholar
  41. 35. 1)
    P. L. Lions, Comm. PDE 8, Part I, 1101–1134, Part II, 1229–1276 (1983).Google Scholar
  42. 35. 2)
    M. G. Crandall and P. L. Lions, Trans. A. M. S. 277, 1 (1984).Google Scholar
  43. 35. 3)
    P. L. Lions, Act. Math. 161, 243 (1988).Google Scholar
  44. 36.
    H. Goldstein, “Classical Mechanics,” Addison-Wesley (1980).Google Scholar
  45. 37. 1)
    E. B. Dynkin, “Markov Processes,” Springer-Verlag Berlin (1965).Google Scholar
  46. 37. 2)
    M. I. Freidlin and A. D. Wentzell, “Random Perturbations of Dynamical Systems,” Springer-Verlag, N. Y. (1983).Google Scholar
  47. 38.
    V. P. Maslov, “Non-standard Characteristics in Asymptotical Problems,” Proc. of Intern. Congress of Mathematicians, 1983, Warszawa, North-Holland (1984) Vol. 1 p. 139.Google Scholar
  48. 39.
    B. Simon, “Functional Integration and Quantum Physics,” Acad. Press, N. Y. (1979).Google Scholar
  49. 40.
    T. Kolsrud, J. C. Zambrini, “J. Math. Physics, 33, 4, 1301 (1992).Google Scholar
  50. 41.
    J. C. Zambrini, “Time reversal and Gaussian measures in Quantum Physics,” in “Stochastic and Quantum Chaos,” Ed. Z. Haba et al, Kluwer Acad., Boston 195, (1995).Google Scholar
  51. 42.
    A. Brandão, Ph. D. Thesis, in preparation.Google Scholar
  52. 43.
    R. Z. Has'minskii, “Stochastic stability of differential equations,” Sijthoff & Noordhoff, Rockville U. S. A. (1980).Google Scholar
  53. 44.
    S. Albeverio, K. Yasue, J. C. Zambrini, Ann. Inst. Henri Poincaré, Phys. Theor., 49, no. 3, 259 (1989).Google Scholar
  54. 45.
    T. Kolsrud, J. C. Zambrini, “The mathematical framework of Euclidean Quantum Mechanics. An Outline,” in “Stochastic Analysis and Applications,” A. B. Cruzeiro and J. C. Zambrini, Progress in Probability Vol. 26, Birkhäuser, Boston (1991).Google Scholar
  55. 46.
    J. L. Dobb, “Stochastic Processes,” Wiley, N. Y. (1953)Google Scholar
  56. 47.
    J. C. Zambrini, “An alternative starting point for Euclidean field theory: Euclidean Quantum Mechanics” IXth International Congress of Mathematical Physics, Swansea (U. K.), Edit. B. Simon, A. Truman, I. M. Davies, Adam Hilger, New York, 260 (1989).Google Scholar
  57. 48.
    I. I. Gihman and A. V. Skorohod, “The theory of stochastic processes,” Vol. I, II, III, Springer-Verlag (1979).Google Scholar
  58. 49.
    M. Thieullen and J. C. Zambrini: “The Theorem of Noether in Euclidean Quantum Mechanics,” Talk given at 5th European Symposium on Stochastic Analysis, Bonn, 4–8/10/94. M. Thieullen and J. C. Zambrini: “The Theorem of Noether in Schrodinger's Euclidean Quantum Mechanics”, to be published. M. Thieullen and J. C. Zambrini: “A Stochastic Noether Theorem”, to be published.Google Scholar
  59. 50. 1)
    E. Nelson, “Quantum Fluctuations,” Princeton Univ. Press, Princeton N. J. (1985).Google Scholar
  60. 50. 2)
    J. M. Bismut, “Mécanique Aléatoire,” Lect. Notes in Math. no. 866, Springer-Verlag, Berlin (1981).Google Scholar
  61. 51.
    D. Bohm, Phys. Rev. 85, 166, 180 (1952); D. Bohm, J. P. Vigier, Phys. Rev. 96, 208 (1954).Google Scholar
  62. 52.
    J. S. Bell, “Speakable and Unspeakable in Quantum Mechanics,” Cambridge Univ. Press, Cambridge, (1987).Google Scholar
  63. 53.
    R. Carmona in Taniguchi Symp. PMMP, K. Itó and N. Ikeda Edit., Academic press, Boston (1987).Google Scholar
  64. 54. a)
    P. Garbaczewski and J. P. Vigier, Phys. Rev. A46, 4634 (1992); P. Garbaczewski and P. Blanchard, Phys. Rev. E49, No. 5, 3815 (1994); P. Garbaczewski, J. R. Klauder, R. Olkiewicz: “The Schödinger Problem, Lévy Processes and all that noise in Relativistic Quantum Mechanics,” to appear.Google Scholar
  65. 54. b)
    T. Mikami, Comm. Math. Phys. 135, 19 (1990); T. Misawa, J. Math. Phys. 34, 775 (1993); A. Wakolbinger, J. Math. Phys. 30(12), 2943 (1989); B. Djehiche, Potential Analysis 2, 349 (1993); J. of Math. Phys. 33(9), 3050 (1992).Google Scholar
  66. 55. 1)
    A. B. Cruzeiro, Z. Haba, J. C. Zambrini, “Bernstein diffusions and Euclidean Quantum Field Theory” in Monte Verità Meeting (Switzerland), Ed. E. Bolthausen and F. Russo, Birkhäuser, to appear.Google Scholar
  67. 2).
    A. B. Cruzeiro and J. C. Zambrini, “Malliavin Calculus and Euclidean Quantum Mechanics II” to appear in J. of Funct. Analysis.Google Scholar
  68. 56.
    J. C. Baez, I. E. Segal, Z. Zhou, “Introduction to algebraic and constructive Quantum Field Theory” Princeton Univ. Press (1992).Google Scholar
  69. 57.
    Y. Aharonov, B. Reznik: “On a time symmetric formulation of Quantum Mechanics” (Preprint).Google Scholar
  70. 58.
    Y. Aharonov, D. Bohm, Phys. Rev. 115, No. 3, 485 (1959).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • J. C. Zambrini
    • 1
  1. 1.Group of Mathematical PhysicsUniversity of LisbonLisboa CodexPortugal

Personalised recommendations