Chaotic dynamics of weakly nonlinear systems

  • D. M. Vavriv
Part I: Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 457)


The progress made in recent years in the study of chaotic states of weakly nonlinear systems is reviewed. We concern with the class of chaotic states pertaining to physical systems with any degree of nonlinearity however small. The conditions for, and the mechanisms of, the transition to chaos are discussed for the weakly nonlinear oscillators and compared with that for the strongly nonlinear ones. Considerable attention is given to analytical methods of the chaos onset prediction. The dynamics of Duffing-type oscillators is considered to illustrate these results.


Phase Portrait Chaotic Dynamics Unstable Manifold Strange Attractor Period Doubling Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Miles, Proc. Nat. Acad. Sci., Phys. Sci. USA, 81, 3919–3923 (1984).Google Scholar
  2. 2.
    A.B. Belogortsev, D.M. Vavriv and O.A. Tretyakov, Sov. Phys. JETP, 65, 737–740 (1987).Google Scholar
  3. 3.
    A.B. Belogortsev, D.M. Vavriv and O.A. Tretyakov, Sov. Phys. Tech. Phys. 33, 174–179 (1988).Google Scholar
  4. 4.
    K. Yagasaki, M. Sakata, and K. Kimura,ASME J. of Appl. Mech. 57, 209 (1990).Google Scholar
  5. 5.
    K. Yagasaki, ASME Journal of Appl. Mech., 59, 161–167 (1992).Google Scholar
  6. 6.
    A.B. Belogortsev, D.M. Vavriv, and O.A. Tretyakov, Appl. Mech. Rev., 46, 372–384 (1993).Google Scholar
  7. 7.
    D.M. Vavriv, V.B. Ryabov, and S.A. Sharapov, Phys. Rev. E. (pending).Google Scholar
  8. 8.
    D.M. Vavriv and I.Yu. Chernyshov, Radiotekhnika i Elektronika, 35, 151–158 (1990).Google Scholar
  9. 9.
    A.B. Belogortsev, M. Poliashenko, O.A. Tretyakov, and D.M. Vavriv, Electronic Lett., 26, 1354–1355.Google Scholar
  10. 10.
    A.B. Belogortsev, D.M. Vavriv and O.A. Tretyakov, Radiotekhnika i Elektronika, 35, 1300–1307 (1990)Google Scholar
  11. 11.
    V.K. Melnikov, Trans. Moscow Math. Soc. 12, 3–57 (1963).Google Scholar
  12. 12.
    A.D. Morosov, Dif. Equations 12, 164–174 (1976).Google Scholar
  13. 13.
    P. Holmes, Philos. Trans. R. Soc. A292, 419–448 (1979).Google Scholar
  14. 14.
    T. Kapitaniak, J. Sound Vib., 121, 259–265 (1988).Google Scholar
  15. 15.
    K. Yagasaki, SIAM J. Math. Anal., 23, 1230–1254 (1992).Google Scholar
  16. 16.
    J.M. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields (Springer, Berlin, 1983).Google Scholar
  17. 17.
    K. Ide and S. Wiggins, Physica D34, 169 (1989).Google Scholar
  18. 18.
    S. Wiggins, Phys. Lett. A124, 138–142 (1987).Google Scholar
  19. 19.
    A.B. Belogortsev, D.M. Vavriv, and B.A. Kalugin, Zh. Tekh. Fiz. 57, 559 (1987). [Sov. Phys. Tech. Phys. 32, 337 (1987).Google Scholar
  20. 20.
    I.Yu. Chernyshov and D.M. Vavriv, in: Proc. Int. Conf. on Noise in physical systems, Ed. A. Ambrozy (Akademiai Kiado, Budapest, 1990) p.651.Google Scholar
  21. 21.
    N.N. Bogoliubov and Yu.A. Mitropolski, Asymptotic methods in the theory of nonlinear oscillations (Gordon & Breach, New York, 1961).Google Scholar
  22. 22.
    V.B. Ryabov and D.M. VaVTiV, Phys. Lett. A153, 431–436 (1991).Google Scholar
  23. 23.
    D.M. Vavriv, V.B. Ryabov, and S.A. Sharapov, Radiotekhnika i Electronika, 38, 464–472 (1993).Google Scholar
  24. 24.
    D.M. Vavriv and V.B. Ryabov, Doll. Akad. Nauk Ukr SSR, A2, 50–55 (1990).Google Scholar
  25. 25.
    D.M. Vavriv and V.B. Ryabov, Comput. Maths & Math. Phys., 32, 1259–1269 (1992).Google Scholar
  26. 26.
    A.B. Belogortsev, Nonlinearity, 5, 889–897 (1992).Google Scholar
  27. 27.
    A.B. Belogortsev, Phys. Lett., A161, 352–356 (1992).Google Scholar
  28. 28.
    K. Yagasaki, ASME J. of Appl. Mech. 58, 244–256 (1991).Google Scholar
  29. 29.
    D.M. Vavriv, V.B. Ryabov and I.Yu. Chernyshov, Sov. Phys. Tech. Phys., 36, 1325–1331 (1991).Google Scholar
  30. 30.
    D.M. Vavriv and V.B. Ryabov, Pis'ma v Zh. Tekh. Fiz. 17, 55–60 (1991).Google Scholar
  31. 31.
    I.Yu. Chernyshov and D.M. Vavriv, Phys. Lett., A165, 117–123 (1992).Google Scholar
  32. 32.
    D.M. Vavriv, O.A. Tretyakov, I.Yu. Chernyshov, Pis'ma v Zh. Tekh. Fiz., 14, 903–908 (1991).Google Scholar
  33. 33.
    D.M. Vavriv and O.A. Tretyakov, Theory of Resonant Amplifiers with Distributed Interaction of O-type (Naukova Dumka Press, Kiev,1987).Google Scholar
  34. 34.
    D.M. Vavriv and A. Oksasoglu, Electronics Lett., 30, 462–463 (1994).Google Scholar
  35. 35.
    A. Oksasoglu and D.M. Vavriv, IEEE Trans. Circuits Syst. I, 41, 669–672 (1994).Google Scholar
  36. 36.
    S.A. Bulgakov, V.B. Ryabov, V.I. Shnyrkov, and D.M. Vavriv, J. Low Temp. Phys. 83 (5/6), 241–255 (1991).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • D. M. Vavriv
    • 1
  1. 1.Radio Astronomy Institute of the Ukrainian Academy of SciencesKharkovUkraine

Personalised recommendations