Strange attractors in nonlinear oscillators

  • Wanda Szemplińska-Stupnicka
Part I: Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 457)


Stability Limit Chaotic Motion Harmonic Component Nonlinear Vibration Strange Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arrowsmith D.K. & Taha, K.J. [1983] Meccanica 18, 195.Google Scholar
  2. Belogortsev, A.B., Vavriv D.M. & Tretyakov, O.A. [1993] Appl. Mech. Rev. 46, 372.Google Scholar
  3. Bogoliubov, N.N. & Mitropolsky, Y.A. [1961] Asymptotic Methods in the Theory of Nonlinear Oscillations (Gordon and Breach, New York).Google Scholar
  4. Bolotin, V.V. [1964] Dynamic Stability of Elastic Systems (Holden-Day, San Francisco).Google Scholar
  5. Dimitriev, A.S., Kishov W.A & Spiro, A.G. [1983] Radiotechnika i Elektrotechnika 12, 2430.Google Scholar
  6. Dimitriev, A.S., Komlev, U.A. & Turaev, D.V. [1992] Int. J. Bifurcation and Chaos 2, 93.Google Scholar
  7. Endo, T. & Saito, T. [1990] Transactions of the IEICE E73, 763.Google Scholar
  8. Guckenheimer, J. & Holmes, P. [1983] Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York).Google Scholar
  9. Hayashi, C. [1985] Nonlinear Oscillations in Physical Systems (Princeton University Press, Princeton).Google Scholar
  10. Kawakami, H. & Hayashi, C. [1981] 26 Int. Wiss. Coll. TH Ilmenau 1981.Google Scholar
  11. Magnus, W. & Winkler, S. [1966] Hill's Equation (Interscience, New York).Google Scholar
  12. Nayfeh, A.H. & Mook, D.T. [1979] Perturbation methods (John Wiley and Sons, New York).Google Scholar
  13. Parlitz, U. & Lauterborn, W. [1987] Phys. Rev. A36, 1428.Google Scholar
  14. van der Pol, B. [1927] Phil Mag. 7, 65.Google Scholar
  15. Quin, G., Dong, D., Li, R. & Wen, X. [1989] Phys. Lett. A141, 412.Google Scholar
  16. Ruelle, D. [1980], The Mathematical Intelligencer, 126.Google Scholar
  17. Steel, W.H. & Kunick, A. [1987] Int. J. Non-Linear Mech. 22, 349.Google Scholar
  18. Stocker, J.J. [1950] Nonlinear Vibrations in Mechanical and Electrical Systems (Intersc. Publ. Inc., New York).Google Scholar
  19. Szemplińska-Stupnicka, W. [1987] J. Sound. and Vib. 113, 155.Google Scholar
  20. Szemplińska-Stupnicka, W. [1990] The Behavior of Nonlinear Vibrating Systems (Kluwer Academic Publisher, Dordrecht) Szemplinska-Stupnicka, W. [1993] ASME DE-56, 421.Google Scholar
  21. Szemplińska-Stupnicka, W. & Bajkowski, J. [1986] Int. J. Non-Linear Mechanics 21, 375.Google Scholar
  22. Szemplińska-Stupnicka, W. & Rudowski, J. [1994] Physics Letters A 192, 201.Google Scholar
  23. Szemplińska-Stupnicka, W. & Niezgodzki, P. [1990] J. Sound. and Vib. 141, 181.Google Scholar
  24. Thompson, J.M.T. & Stewart, H.B. [1986] Nonlinear Dynamics and Chaos (J. Wiley and Sons, New York, 1986).Google Scholar
  25. Tomita, K. [1982] Phys. Reports 86, 113.Google Scholar
  26. Ueda, Y. [1979] J. Statistical Physics 20, 181–196.Google Scholar
  27. Ueda, Y. [1980] Annals of the N. Y. Academy of Sciences 357—Nonlinear Dynamics, 422.Google Scholar
  28. Ueda, Y. [1991] Chaos, Solitons and Fractals 1, 199.Google Scholar
  29. Ueda, Y. & Akamatsu, N. [1981] IEEE Trans. of Circuits and Systems CAS-28, 217.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Wanda Szemplińska-Stupnicka
    • 1
  1. 1.Institute of Fundamental Technological Research Polish Academy of SciencesWarsawPoland

Personalised recommendations