Rigorous numerics of chaotic dynamical systems

  • Marian Mrozek
Part I: Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 457)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Aberth, Precise Numerical Analysis, William C. Brown Publishers, Dubuque, Iowa, 1988.Google Scholar
  2. 2.
    C. Conley, On a generalization of the Morse index, in Ordinary Differential Equations, 1971 NRL-MRC Conference, ed. L. Weiss, Academic Press, New York, 27–33 (1972).Google Scholar
  3. 3.
    B.M. Garay, Discretization and some qualitative properties of ordinary differential equations about equilibria, Acta Math. Univ. Comeniane, 62, 249–275 (1993).Google Scholar
  4. 4.
    B.M. Garay, On structural stability of ordinary differential equations with respect to discretization methods, preprint.Google Scholar
  5. 5.
    L. Górniewicz, Topological Degree of Morphisms and its Applications to Differential Inclusions, Raccolta di Seminari del Dipartimento di Matematica dell'Universita degli Studi delta Calabria, No. 5, 1983.Google Scholar
  6. 6.
    S.P. Hastings, W.C. Troy, A shooting approach to the Lorenz equations, Bull. AMS, 27, 298–303 (1992).Google Scholar
  7. 7.
    B. Hassard and J. Zhang, Existence of a homoclinic orbit of the Lorenz system by precise shooting, SIAM J. Math. Anal., 25, 179–196 (1994).Google Scholar
  8. 8.
    B. Hassard, S.P. Hastings, W.C. Troy, J. Zhang, A computer proof that the Lorenz equations have “chaotic” solutions, Appl. Math. Letter, to appear.Google Scholar
  9. 9.
    T. Kaczyński and M. Mrozek, Conley index for discrete multivalued dynamical systems, Topology & its Appl, accepted.Google Scholar
  10. 10.
    K. Mischaikow and M. Mrozek, Isolating neighbourhoods and Chaos, accepted.Google Scholar
  11. 11.
    K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Bull. AMS, in print.Google Scholar
  12. 12.
    K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Part II: details, in preparation.Google Scholar
  13. 13.
    M. Mrozek, Leray Functor and the Cohomological Conley Index for Discrete Dynamical Systems, Transactions of the American Mathematical Society, 318, 149–178 (1990).Google Scholar
  14. 14.
    M. Mrozek, Topological invariants, multivalued maps and computer assisted proofs in dynamics, in preparation.Google Scholar
  15. 15.
    M. Mrozek, J. Reineck, R. Srzednicki, The Conley index over S1, in preparation.Google Scholar
  16. 16.
    M. Mrozek and K.P. Rybakowski, Discretized ordinary differential equations and the Conley index, J. of Dynamics and Differential Equations, 4, 57–63 (1992).Google Scholar
  17. 17.
    A. Neumaier, Th. Rage, Rigorous chaos verification in discrete dynamical systems, Physica D, 67, 327–346 (1993).Google Scholar
  18. 18.
    Th. Rage, A. Neumaier, Ch. Schlier, Rigorous verification of chaos in a molecular model, Physical Rev. E50, 2682–2688 (1994).Google Scholar
  19. 19.
    A.M. Stuart, Numerical analysis of dynamical systems, Acta Numerica, in print.Google Scholar
  20. 20.
    A. Szymczak, The Conley index and symbolic dynamics, preprint.Google Scholar
  21. 21.
    P. Zgliczyiiski, Fixed point index for iterations of maps, topological horseshoe and chaos, preprint.Google Scholar
  22. 22.
    P. Zgliczyński, in preparation. *** DIRECT SUPPORT *** A3418380 00006Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Marian Mrozek
    • 1
  1. 1.Instytut InformatykiUniwersytet JagiellońskiKrakówPoland

Personalised recommendations