Advertisement

Entropy and quantum characteristic exponents. steps towards a quantum pesin theory

  • R. Vilela Mendes
Part I: Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 457)

Abstract

Classical ergodic invariants like the Lyapunov exponent and the entropy, defined in a space of densities acted upon by the Perron-Frobenius operator, provide an intuitive framework to construct the corresponding notions in quantum mechanics.

Rigorous existence conditions obtained for quantum characteristic exponents and a definition of quantum entropy based on the Brin-Katok construction are steps towards a quantum ergodic theory, where a rigorous definition of quantum chaos may be established.

Keywords

Lyapunov Exponent Characteristic Exponent Quantum Chaos Nuclear Space Quantum Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Lasota and M.C. Mackey; Probabilistic Properties of Deterministic Systems, chapter 4, Cambridge Univ. Press, Cambridge 1985.Google Scholar
  2. 2.
    V.I. Oseledets; Trans. Mosc. Math. Soc. 19, 197 (1969).Google Scholar
  3. 3.
    D. Ruelle; Chaotic Evolution and Strange Attractors, Cambridge Univ. Press, Cambridge 1989.Google Scholar
  4. 4.
    I.M. Gelfand and N.Ya. Vilenkin; Generalized Functions, vol. 4, Academic Press, New York 1964.Google Scholar
  5. 5.
    J. Schwartz; Nonlinear Functional Analysis, Gordon and Breach, New York 1969.Google Scholar
  6. 6.
    T. Hida; Brownian Motion, Springer, Berlin 1980.Google Scholar
  7. 7.
    K. Maurin; General Eigenfunction Expansions and Unitary Representations of Topological Groups, Polish Scientific Pub., Warsaw 1968.Google Scholar
  8. 8.
    J. Doyne Farmer and J. Sidorovich; Evolution, Learning and Cognition, Y.C. Lee(Ed.), page 277, World Scientific, Singapore 1988.Google Scholar
  9. 9.
    T.J. Taylor, Nonlinearity 6, 369 (1993).Google Scholar
  10. 10.
    A. Carreira, M.O. Hongler and R. Vilela Mendes; Phys. Lett. A155, 388 (1991).Google Scholar
  11. 11.
    R. Vilela Mendes; Phys. Lett. A187, 299 (1994).Google Scholar
  12. 12.
    J.F.C. Kingman; J.R. Statist. Soc. 30, 499 (1986); Ann. Prob. 1, 883 (1973).Google Scholar
  13. 13.
    R. Vilela Mendes; Phys. Lett. A171, 253 (1992).Google Scholar
  14. 14.
    M.D. Srinivas; J. Math. Phys. 19, 1952 (1978).Google Scholar
  15. 15.
    A. Connes, H. Narnhofer and W. Thirring; Commun. Math. Phys. 112, 691 (1987).Google Scholar
  16. 16.
    H. Araki; in Proc. 8th Int. Congr. on Mathematical Physics, M. Mebkhout and R. Seneor (Eds.), page 354, World Scientific, Singapore 1987.Google Scholar
  17. 17.
    G. Lindblad; in Quantum Probability and Applications III, L. Accardi and W. von Waldenfelds (Eds.), page 183, Lecture Notes in Mathematics 1303, Springer, Berlin 1988.Google Scholar
  18. 18.
    R. Vilela Mendes; J. Phys. A: Math. Gen. 24, 4349 (1991).Google Scholar
  19. 19.
    W. Slomczyński and K. Zyczkowski; J. Math. Phys. 35, 5674 (1994).Google Scholar
  20. 20.
    M. Brin and A. Katok; in Geometric Dynamics, J. Palis (Ed.), page 30, Lecture Notes in Mathematics 1007, Springer, Berlin 1983.Google Scholar
  21. 21.
    J. Sebastião e Silva; Math. Annalen 174, 109 (1967).Google Scholar
  22. 22.
    R. Vilela Mendes and R. Coutinho; A Quantum Pesin Theory, in preparation.Google Scholar
  23. 23.
    R. Vilela Mendes and R. Coutinho; Numerical Algorithms for Quantum Characteristic Exponents, in preparation.Google Scholar
  24. 24.
    R. Mañé; Ergodic Theory and Differentiable Dynamics, Springer, Berlin 1987.Google Scholar
  25. 25.
    D. Ruelle; Ann. Math. 115, 243 (1982).Google Scholar
  26. 26.
    F. Haake, H. Wiedemann and K. Życzkowski; Ann. Physik 1, 531 (1992).Google Scholar
  27. 27.
    K. Życzkowski, H. Wiedeman and W. Slomczyński; Vistas in Astronomy 37, 153 (1993).Google Scholar
  28. 28.
    W. Majewski and M. Kuna, J. Math. Phys. 34, 5007 (1993).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • R. Vilela Mendes
    • 1
  1. 1.Grupo de Física-MatemáticaComplexo II - Universidade de LisboaPortugal

Personalised recommendations