Advertisement

Dissipative structures and weak turbulence

  • Paul Manneville
Part I: Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 457)

Abstract

We present a brief overview of the current understanding of temporal and spatio-temporal chaos, both termed weak turbulence according to the context [1]. The process which allows one to reduce the primitive problem to a low-dimensional dynamical system is discussed. It turns out to be appropriate as long as confinement effects are sufficiently strong to freeze the space dependence of unstable modes, hence temporal chaos only. Otherwise modulated patterns arise, yielding genuine space-time chaos. The corresponding theory rests on envelope equations providing a useful framework for weak turbulence in a globally super-critical setting. spatio-temporal intermittency analyzed next is the relevant scenario in the sub-critical case. Finally, the connection with hydrodynamic turbulence and the more general relevance of some of the ideas developed here are examined.

Keywords

Unstable Mode Strange Attractor Dissipative Structure Secondary Instability Weak Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a more developed introduction, consult: P. Manneville, Dissipative Structures and Weak Turbulence (Academic Press, 1990). 2. Seminal articles are: a) L.D. Landau, Dokl. Akad. Nauk SSSR 44(1944)339, reprinted in Collected Papers of L.D. Landau, D. ter Haar, Ed. (Pergamon Press, 1965)Google Scholar
  2. 2.b)
    D. Ruelle & F. Takens, Comm. Math. Phys. 20, 167 (1971).Google Scholar
  3. 3.
    D. Ruelle, Ann. N.Y. Acad. Sc. 316, 408 (1979); and also “Where can one hope to profitably apply the ideas of chaos,” Physics Today, July 1994.Google Scholar
  4. 4.
    G. Nicolis & I. Prigogine, Self-organization in nonequilibrium systems, from dissipative structures to order through fluctuations (Wiley, 1977).Google Scholar
  5. 5.
    For a physical viewpoint consult: H. Haken, Synergetics (Springer-Verlag, 1983); and for mathematical aspects: J. Guckenheimer & P. Holmes, Nonlinear oscillations, dynamical systems and bifurcation of vector fields (Springer-Verlag, 1983); or also: G. looss, “Reduction of the dynamics of a bifurcation problem using normal forms and symmetries,” in Instabilities and nonequilibrium structures, E. Tirapegui & D. Villaroel, Eds. (Reidel, 1987).Google Scholar
  6. 6.
    For a introduction to chaos, consult: P. Bergé, Y. Pomeau & Ch. Vidal: Order within Chaos (Wiley, 1984), and for a more advanced review: H.G. Schuster: Deterministic chaos-2nd edition (Physics Verlag, 1988); or elseGoogle Scholar
  7. 7.
    Two classical models are: M. Hénon, Comm. Math. Phys. 50, 69 (1976); andGoogle Scholar
  8. 7.a
    E. N. Lorenz, J. Atm. Sc. 20, 130 (1963).Google Scholar
  9. 8.
    Problems related to the reconstruction of chaotic dynamics are also of great interest; consult: F. Takens, in Dynamical Systems and Turbulence D.A Rand, L.S. Young, eds. (Springer-Verlag, 1981)Google Scholar
  10. 8.b
    N.H. Packard et al., Phys. Rev. Lett. 45, 712 (1980); and, for reviews: N.A. Gershenfeld, “An experimentalist's introduction to the observation of dynamical systems,” in: Hao Bai-lin, ed., Directions in Chaos Vol. 2 (World Scientific, 1989); or N. A. Gershenfeld & A.S. Weigeng, Eds., The Future of Time Series: Learning and Understanding (Addison-Wesley, 1993); see in particular the lucid introduction by the editors of the book. A recent review of chaos control is given byGoogle Scholar
  11. 8.e
    T. Shinbrot et al., Nature 363 411 (1993).Google Scholar
  12. 9.
    Envelope equations have been introduced to describe modulated patterns in the context of convection by: A.C. Newell & J.A. Whitehead, J. Fluid Mech. 38, 279 (1969); andGoogle Scholar
  13. 9.a
    L.A. Segel, J. Fluid Mech. 38, 203 (1969). See alsoGoogle Scholar
  14. 9.b
    M.C. Cross & A.C. Newell, Physica 10D, 299 (1984), and further: A.C. Newell, “The dynamics of patterns: a survey,” in [10]Google Scholar
  15. 9.d
    A.C. Newell, T. Passot & J. Lega, Ann. Rev. Fluid Mech. 25, 399 (1993).Google Scholar
  16. 10.
    J.E. Wesfreid et al., Eds.: Propagation in systems far-from-equilibrium Springer Series in Synergetics vol. 41 (Springer, Heidelberg, 1988).Google Scholar
  17. 11.
    M.C. Cross, Phys. Rev. A25, 1065 (1982).Google Scholar
  18. 12.
    A.C. Newell, Lectures in Applied Mathematics 15, 157 (1974).Google Scholar
  19. 13.
    The general framework is introduced by: H. Brand, “Phase dynamics-a review and a perspective,” in [10].Google Scholar
  20. 14.
    Original introductions of the KSE are by: G.I. Sivashinsky, Acta Astronautica 4, 1177 (1977), andGoogle Scholar
  21. 14.a
    Y. Kuramoto & T. Tsuzuki, Prog. Theor. Phys. 55, 356 (1976); see alsoGoogle Scholar
  22. 14.b
    Y. Kuramoto, Prog. Theor. Phys. 71, 1182 (1984), and Chemical oscillations, waves and turbulence (Springer-Verlag, 1984); for a review, consult also: P. Manneville, “The Kuramoto-Sivashinsky equation: a progress report,” in [10].Google Scholar
  23. 15.
    H. Chaté, P. Manneville, “Phase turbulence,” in [16].Google Scholar
  24. 16.
    For an account of recent advances in turbulence research consult: A tentative dictionary of turbulence, O. Cardoso & P. Tabeling, Eds. (Plenum Press, 1995).Google Scholar
  25. 17.
    H. Chaté, in: Spatiotemporal Patterns in Nonequilibrium Complex Systems, P.E. Cladis & P. Palffy-Muhoray, Eds. (Addison-Wesley, 1995); alsoGoogle Scholar
  26. 17.a
    D.A. Egolf & H.S. Greenside, Phys. Rev. Lett. 74, 1751 (1995).Google Scholar
  27. 18.
    Recent advances are reviewed by: M.C. Cross & P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).Google Scholar
  28. 19.
    Y. Pomeau, in: Spatio-temporal coherence and chaos in physical systems, A.R. Bishop et al., Eds. (North-Holland, 1986).Google Scholar
  29. 20.
    D. Coles, J. Fluid Mech. 21, 285 (1965)Google Scholar
  30. 20.a
    C.D. Andereck, S.S. Liu & H.L. Swinney, J. Fluid Mech. 164, 155 (1986)Google Scholar
  31. 20.b
    J.J. Hegseth, C.D. Andereck, F. Hayot & Y. Pomeau, Phys. Rev. Lett. 62, 257 (1989).Google Scholar
  32. 21.
    see, e.g., W. Kinzel, “Directed Percolation” in: G. Deutscher et al., eds., Percolation Structures and and Processes, Annals of the Israel Phys Soc., 5 (1983)Google Scholar
  33. 22.
    K. Kaneko, Prog. Theor. Phys. 74, 1033 (1985).Google Scholar
  34. 23.
    H. Chaté & P. Manneville, Phys. Rev. Lett. 58, 112 (1987); Physica 32D, 409(1988); Europhys. Lett. 6, 591(1988); Physica 37D, 33(1989); J.Stat.Phys. 56, 357(1989).Google Scholar
  35. 24.
    Reviews with references by H. Chaté & P. Manneville can be found in P. Coullet & P. Huerre, Eds. New trends in nonlinear dynamics and pattern forming phenomena (Plenum, 1991), or in [16].Google Scholar
  36. 25.
    For experimental evidence of spatio-temporal intermittency in convection, consult: P. Bergé, Nucl. Phys. B (Proc.Suppl.) 2, 247 (1987)Google Scholar
  37. 25.a
    S. Ciliberto & P. Bigazzi, Phys. Rev. Lett. 60, 286 (1988)Google Scholar
  38. 25.b
    F. Daviaud, M. Dubois & P. Bergé, Europhys. Lett. 9, 441 (1989); for the “printer” instabilityGoogle Scholar
  39. 25.c
    M. Rabaud et al., Phys. Rev. Lett. 64, 184 (1990); consult the review by F. Daviaud, “Experiments in 1D turbulence,” in [l6].Google Scholar
  40. 26.
    See the review by P. Huerre & P. Monkewitz, Ann. Rev. Fluid Mech. 22, 473 (1990).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Paul Manneville
    • 1
    • 2
  1. 1.LadHyXÉcole PolytechniquePalaiseauFrance
  2. 2.Service de Physique de l'État CondenséCentre d'Études de SaclayGif-sur-YvetteFrance

Personalised recommendations