Classical and quantum chaotic scattering

  • Ying-Cheng Lai
Part I: Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 457)


In this paper, several recent results on classical and quantum chaotic scattering by the author and collaborators are reviewed. New phenomena regarding qualitative changes of scattering characteristics as parameter changes in the classical context and quantum manifestation of chaotic scattering are discussed.


Fractal Dimension Unstable Manifold Chaotic Region Unstable Foliation Decay Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.a
    D.L. Rod, J. Diff. Eqs. 14, 129 (1973)Google Scholar
  2. 1.b
    R.C. Churchill, G. Pecelli and D.L. Rod, J. Diff. Eqs. 17, 329 (1975)Google Scholar
  3. 1.c
    M.C. Gutzwiller, Physica D7, 341 (1983)Google Scholar
  4. 1.d
    C. Jung, J. Phys. A19, 1345 (1986)Google Scholar
  5. 1.e
    B. Eckhardt, Europhys. Lett. 61, 329 (1988)Google Scholar
  6. 1.f
    P. Gaspard and S.A. Rice, J. Chem. Phys. 90, 2225, 2242, 2255 (1989)Google Scholar
  7. 1.g
    Z. Kovács and T. Tel, Phys. Rev. Lett. 64, 1617 (1990)Google Scholar
  8. 1.h
    Y.C. Lai and C. Grebogi, Int. J. Bif. & Chaos 1, 667 (1991). For recent advances, see Chaos 3 (4), Focus Issus on Chaotic Scattering, eds. T. Tél and E. Ott (1993).Google Scholar
  9. 2.a
    M. Hénon, Icarus 66, 536 (1986); Physica D33 132(1988)Google Scholar
  10. 2.b
    P.T. Boyd and S.L.W. McMillan, Chaos 4, 507 (1993).Google Scholar
  11. 3.a
    B. Eckhardt and H. Aref, Trans. Soc. Roy. Lond. A326, 655 (1988)Google Scholar
  12. 3.b
    J.B. Kadtke and E.A. Novikov, Chaos 3, 543 (1993)Google Scholar
  13. 3.c
    C. Jung, E. Tel and E.M. Ziemniak, Chaos 3, 555 (1993)Google Scholar
  14. 3.d
    T.H. Soloman, E.R. Weeks and H.L. Swinney, Physica D76, 70 (1994)Google Scholar
  15. 3.e
    E.M. Ziemniak, C. Jung and T. Tel, Physica D76, 123 (1994).Google Scholar
  16. 4.
    D.W. Noid, S. Gray and S.A. Rice, J. Chem. Phys. 84, 2649 (1986).Google Scholar
  17. 5.a
    R.A. Jalabert, H.U. Baranger and A.D. Stone, Phys. Rev. Lett. 65, 2442 (1990)Google Scholar
  18. 5.b
    H.U. Baranger, R.A. Jalabert and A.D. Stone, Chaos 4, 665 (1993)Google Scholar
  19. 5.c
    C.M. Marcus, R.M. Westervelt, P.F. Hopkins and A.C. Gossard, Chaos 4, 643 (1993)Google Scholar
  20. 5.d
    W.A. Lin, J.B. Delos and R.V. Jensen, Chaos 4, 655 (1993).Google Scholar
  21. 6.a
    S. Bleher, E. Ott and C. Grebogi, Phys. Rev. Lett. 63, 919 (1989)Google Scholar
  22. 6.b
    S. Bleher, C. Grebogi and E. Ott, Physica D46, 87 (1990).Google Scholar
  23. 7.
    M. Ding, C. Grebogi, E. Ott and J.A. Yorke, Phys. Rev. A42, 7025 (1990).Google Scholar
  24. 8.
    M.J. Feigenbaum, J. Stat. Phys. 19, 25 (1978).Google Scholar
  25. 9.
    M. Ding, C. Grebogi, E. Ott and J.A. Yorke, Phys. Lett. A153, 21 (1991).Google Scholar
  26. 10.a
    Y.C. Lai, C. Grebogi, R. Blümel and I. Kan, Phys. Rev. Lett. 71, 2212 (1993)Google Scholar
  27. 10.b
    Y.C. Lai and C. Grebogi, Phys. Rev. E49, 3761 (1994).Google Scholar
  28. 11.
    Y.T. Lau, J.M. Finn and E. Ott, Phys. Rev. Lett. 66, 978 (1991).Google Scholar
  29. 12.
    Y.C. Lai, M. Ding, C. Grebogi and R. Blümel, Phys. Rev. A46, 4661 (1992).Google Scholar
  30. 13.
    R. Blümel and U. Smilansky, Phys. Rev. Lett. 60, 477 (1988) and Physica D36, 111(1989).Google Scholar
  31. 14.
    Y.C. Lai, R. Blümel, E. Ott and C. Grebogi, Phys. Rev. Lett. 68, 3491 (1992).Google Scholar
  32. 15.a
    G. Troll and U. Smilansky, Physica D35, 34 (1989)Google Scholar
  33. 15.b
    G. Troll; Physica D50, 276 (1991); Chaos 4, 459(1993).Google Scholar
  34. 16.a
    C. Grebogi, E. Ott and J.A. Yorke, Phys. Rev Lett. 48, 1507 (1982) and Physica D7, 181(1983)Google Scholar
  35. 16.b
    C. Grebogi, E. Ott, F. Romeiras and J.A. Yorke, Phys. Rev. A36, 5365 (1987)Google Scholar
  36. 16.c
    Y.C. Lai, C. Grebogi and J.A. Yorke, in Applied Chaos, pp. 441–455, EPRI Workshop on Applications of Chaos, eds. J.H. Kim and J. Stringer, John Wiley & Sons, 1992.Google Scholar
  37. 17.a
    R.D. Woods and D.S. Saxon, Phys. Rev. 95, 577 (1954)Google Scholar
  38. 17.b
    P. Ring and P. Schuck, The Nuclear Many-Body Problem, Springer-Verlag, New York, Heidelberg, Berlin, 1980.Google Scholar
  39. 18.a
    C. Grebogi, S.W. McDonald, E. Ott and J.A. Yorke, Phys. Lett. A99, 415 (1983)Google Scholar
  40. 18.b
    S.W. McDonald, C. Grebogi, E. Ott and J.A. Yorke, Physica D17, 125 (1985).Google Scholar
  41. 19.a
    C. Grebogi, H.E. Nusse, E. Ott and J.A. Yorke, in Springer Lecture Notes in Mathematics, Vol. 1342 (Dynamical systems), Ed. J. C. Alexander (Springer-Verlag, New York), pp.220–250Google Scholar
  42. 19.b
    H.E. Nusse and J.A. Yorke, Commun. Math. Phys. 150, 1 (1992).Google Scholar
  43. 20.
    C.F.F. Karney, Physica D8, 360 (1983).Google Scholar
  44. 21.
    J.D. Meiss, J.R. Cary, C. Grebogi, J.D. Crawford, A.N. Kaufman and H.D.I. Abarbanel, Physica D6, 375 (1983)Google Scholar
  45. 22.
    B.V. Chirikov and D.L. Shepelyansky, Physica D13, 394 (1984).Google Scholar
  46. 23.
    J.D. Meiss and E. Ott, Phys. Rev. Lett. 55, 2741 (1985); Physica D20, 387(1986).Google Scholar
  47. 24.
    R.S. MacKay, J.D. Meiss and I.C. Percival, Phys. Rev. Lett 52, 697 (1984).Google Scholar
  48. 25.
    Y.C. Lai, C. Grebogi, R. Blümel and M. Ding, Phys. Rev. A45, 8284 (1992).Google Scholar
  49. 26.
    W.H. Miller, Adv. Chem. Phys. 30, 77 (1975).Google Scholar
  50. 27.
    Y.C. Lai, E. Ott and C. Grebogi, Phys. Lett. A173, 148 (1993).Google Scholar
  51. 28.a
    J. Koringa, Physica 13, 392 (1947)Google Scholar
  52. 28.b
    W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954)Google Scholar
  53. 28.c
    M.V. Berry, Ann. Phys. (New York) 131, 163 (1981). *** DIRECT SUPPORT *** A3418380 00005Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Ying-Cheng Lai
    • 1
  1. 1.Department of Physics and Astronomy Department of Mathematics Kansas Institute for Theoretical and Computational ScienceThe University of KansasLawrenceUSA

Personalised recommendations