Advertisement

Anomalous diffusion and Lévy statistics in intermittent chaotic systems

  • J. Klafter
  • G. Zumofen
  • M. F. Shlesinger
Part I: Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 457)

Abstract

Deviations from simple Brownian motion have been observed in intermittent chaotic systems; of particular interest has been the case of enhanced diffusion. We review an approach to this anomalous behavior based on Lévy scale-invariant distributions to describe transport in such systems. We introduce the basic ingredients that make the approach useful in describing the non-Brownian behavior and demonstrate the applicability in the cases of the standard map, “egg-crate” potential and a one-dimensional iterated map which shows a combined laminar and dispersive motion.

Keywords

Lyapunov Exponent Chaotic Motion Motion Event Anomalous Diffusion Wait Time Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.F.F. Karney, Physica D 8, 360 (1983).Google Scholar
  2. 2.
    B.V. Chirikov and D.L. Shepelyansky, Physica D 13, 394 (1984).Google Scholar
  3. 3.
    B.V. Chirikov and D.L. Shepelyansky, in “Renormalization Group”, World Scientific (1988).Google Scholar
  4. 4.
    B.V. Chirikov and D.L. Shepelyansky. Phys. Rev. Lett. 61, 1039 (1988).Google Scholar
  5. 5.
    T. Geisel, J. Nierwetberg, and A. Zacherl, Phys. Rev. Lett. 54, 616 (1985).Google Scholar
  6. 6.
    T. Geisel, A. Zacherl, and G. Radons, Z. Phys. B71, 117 (1988).Google Scholar
  7. 7.
    A.A. Chernikov, B.A. Petrovichev, A.V. Rogalsky, R.Z. Sagdeev, and G.M. Zaslavsky, Phys. Lett. A144, 127 (1990).Google Scholar
  8. 8.
    D.K. Chaikovosky and G.M. Zaslavsky, Chaos 1, 463 (1991).Google Scholar
  9. 9.
    X.-J. Wang, Phys. Rev. A 45, 8407 (1992).Google Scholar
  10. 10.
    M.F. Shlesinger, G.M. Zaslavsky, and J. Klafter, Nature 263, 31 (1993).Google Scholar
  11. 11.
    G. Zumofen and J. Klafter, Phys. Rev. E47, 851 (1993).Google Scholar
  12. 12.
    A.N. Jannacopoulos and G. Rowlands, J. Phys. A26, 6231 (1993).Google Scholar
  13. 13.
    J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).Google Scholar
  14. 14.a
    R. Ishizaki, H. Hata, T. Horita, and H. Mori, Prog. Theor. Phys. 84, 179 (1990)Google Scholar
  15. 14.b
    R. Ishizaki, T. Horita, T. Kobayashi, and H. Mori, Prog. Theor. Phys. 85, 1013 (1991).Google Scholar
  16. 15.
    G. Zumofen, J. Klafter, and A. Blumen, Phys. Rev. E 47, 2183 (1993).Google Scholar
  17. 16.
    O. Cardoso and P. Tabeling, Europhys. Lett. 7, 225 (1988).Google Scholar
  18. 17.
    R. Ramshankhar, D. Berlin, and J.P. Gollub, Phys. Fluids A2, 1955 (1990).Google Scholar
  19. 18.
    T.H. Solomon, E.R. Weeks, and H.L. Swinney, Phys. Rev. Lett. 71, 3975 (1993).Google Scholar
  20. 19.
    M.F. Shlesinger, J. Klafter, and Y.M. Wong, J. Stat. Phys. 27, 499 (1982).Google Scholar
  21. 20.
    M.F. Shlesinger and J. Klafter,Phys. Rev. Lett. 54, 2551 (1985).Google Scholar
  22. 21.
    G.M. Zaslavsky, D. Stevens, and H. Weitzner, Phys. Rev. E48, 1683 (1993).Google Scholar
  23. 22.
    F. Hayot, Phys. Rev. A 43, 806 (1991).Google Scholar
  24. 23.
    J.A. Viecelli, Phys. Fluids A2, 2036 (1990).Google Scholar
  25. 24.
    O.V. Bychuck and B. O'Shaugnessy, Phys. Rev. Lett. 74, 1795 (1995).Google Scholar
  26. 25.
    B. Mandelbrot, “The Fractal Geometry in Nature” (Freeman, San Francisco, 1982).Google Scholar
  27. 26.
    P. Lévy, “Théorie de l'addition des variables aléatoires”, Gauthier Villars, Paris 1937).Google Scholar
  28. 27.
    A. Janicki and A. Weron, “Simulation of Chaotic Behavior of α-Stable Stochastic Processes”, (Dekker, New York, 1994).Google Scholar
  29. 28.
    M.F. Shlesinger and J. Klafter, in “On Growth and Form”, (ed. H.E. Stanley and N. Ostrowsky, Kluwer, Boston, 1986).Google Scholar
  30. 29.
    E.W. Montroll and M.F. Shlesinger, in “Studies in Statistical Mechanics”, XI, (ed. J.L. Lebowitz and E.W. Montroll, North Holland, Amsterdam, 1984), p1.Google Scholar
  31. 30.
    J. Klafter, A. Blumen, and M.F. Shlesinger, Phys. Rev. A 35, 3081 (1987).Google Scholar
  32. 31.
    M.F. Shlesinger, B.J. West, and J. Klafter, Phys. Rev. Lett. 58, 1100 (1987).Google Scholar
  33. 32.
    V. Seshadri and B.J. West, Proc. Natl. Acad. Sci. USA 79, 4501 (1982).Google Scholar
  34. 33.
    J. Klafter and G. Zumofen, Physica A196, 102 (1993).Google Scholar
  35. 34.
    B.V. Chirikov, Phys. Rep. 52, 264 (1979).Google Scholar
  36. 35.
    Y.H. Ichikawa, T. Kamimura, and T. Hatori, Physica D29, 247 (1987).Google Scholar
  37. 36.
    G. Zumofen and J. Klafter, Europhys. Lett. 25, 565 (1994).Google Scholar
  38. 37.
    J.D. Hanson, J.R. Cary, and J.D. Meiss, J. Stat. Phys. 39, 27 (1985).Google Scholar
  39. 38.
    J. Klafter and G. Zumofen, (unpublished).Google Scholar
  40. 39.
    Y. Kikuchi and Y. Aizawa, Progr. Theor. Phys. 84, 563 (1990).Google Scholar
  41. 40.
    D.S. Sholl and R.T. Skodje, Physica D71, 168 (1994).Google Scholar
  42. 41.
    J. Klafter and G. Zumofen, Phys. Rev. E49, 4873 (1994).Google Scholar
  43. 42.
    T. Geisel, S. Thomae, Phys. Rev. Lett. 52, 1936 (1984).Google Scholar
  44. 43.
    J. Klafter and G. Zumofen, J. Phys. Chem. 98, 7366 (1994).Google Scholar
  45. 44.
    A. Blumen, J. Klafter, and G. Zumofen, in “Optical Spectroscopy of Glasses”, ed. I. Zschokke (Reidel, Dordrecht, 1986), p.199.Google Scholar
  46. 45.
    G.M. Zaslavsky, Chaos, 4, 1 (1994).Google Scholar
  47. 46.
    G. Zumofen and J. Klafter, Phys. Rev. E, 51, xxx (1995).Google Scholar
  48. 47.
    P. Manneville, J. Phys. (Paris) 41, 1235 (1980).Google Scholar
  49. 48.
    G. Zumofen and J. Klafter, Chem. Phys. Lett. 219, 303 (1994).Google Scholar
  50. 49.
    G. Trefán, E. Floriani, B.J. West, and P. Grigolini, Phys. Rev. E 50, 2564 (1994).Google Scholar
  51. 50.
    G. Zumofen and J. Klafter, Phys. Rev. E 50, 5119 (1995).Google Scholar
  52. 51.
    G. Zumofen and J. Klafter, Phys. Rev. E 51, yyy (1995).Google Scholar
  53. 52.
    W. Feller, “An Introduction to Probability Theory and its Applications” (Wiley, New York, 1971).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • J. Klafter
    • 1
  • G. Zumofen
    • 2
  • M. F. Shlesinger
    • 3
  1. 1.School of ChemistryTel-Aviv UniversityTel-AvivIsrael
  2. 2.Physical Chemistry LaboratoryETH-ZentrumZürichSwitzerland
  3. 3.Physics DivisionOffice of Naval ResearchArlington

Personalised recommendations