Strange attractors in higher-dimensional phase space

  • Tomasz Kapitaniak
  • Jerzy Wojewoda
Part I: Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 457)


We discuss properties of higher dimensional strange attractors of dissipative dynamical systems in the neighbourhood of chaos-hyperchaos transition. We show new types of bifurcations which are typical for coupled chaotic systems. Particularly we introduce the concept of monotonic stability for which all perturbations decay monotonically and describe transition from monotonically stable to asymptotically stable chaotic attractor.


Lyapunov Exponent Asymptotic Stability Invariant Manifold Chaotic Attractor Strange Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Milnor, Commun. Math. Phys., 99, 177 (1985).Google Scholar
  2. 2.
    P. Ashwin, J. Buescu and I. Stewart, Phys. Lett. A193, 126 (1994).Google Scholar
  3. 3.
    T. Yamada and H. Fujisaka, Prog. Theor. Phys., 70, 1240 (1983).Google Scholar
  4. 4.
    E. Ott, J.C. Sommerer, Phys. Lett. A188, 39 (1994).Google Scholar
  5. 5.
    E. Ott, J.C. Sommerer, J.C. Alexander, I. Kan and J.A. Yorke, Physica D76, 384 (1994).Google Scholar
  6. 6.
    T. Kapitaniak, and W.-H. Steeb, Phys. Lett. 152A, 33 (1991).Google Scholar
  7. 7.
    T. Kapitaniak, Chaotic Oscillations in Mechanical Systems, Manchester University Press: Manchester (1991).Google Scholar
  8. 8.
    T. Kapitaniak, Phys. Rev. 47E, R2975 (1993).Google Scholar
  9. 9.
    T. Kapitaniak and L.O. Chua, Int. J. Bif. Chaos, 477 (1994).Google Scholar
  10. 10.
    V.S. Anishchenko, T. Kapitaniak, M.A. Safonova and O.V. Sosnovzeva, Phys. Lett. A192, 207 (1994).Google Scholar
  11. 11.
    J.C. Alexander, I. Kan, J.A. Yorke and Z. You, Int. J. Bif. Chaos, 2, 795 (1992).Google Scholar
  12. 12.
    O. E. Rossler, Phys. Lett., 57A, 397 (1976).Google Scholar
  13. 13.
    T.S. Parker, and L.O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer: New York (1989).Google Scholar
  14. 14.
    T. Kapitaniak and K.-E. Thylwe (in preparation).Google Scholar
  15. 15.
    L.M. Pecora and T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990).Google Scholar
  16. 16.
    M. de Sousa Viera, A.J. Lichtenberg, and M.A. Lieberman, Phys. Rev. A46, 7359 (1992).Google Scholar
  17. 17.
    T. Kapitaniak and J. Wojewoda (in preparation).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Tomasz Kapitaniak
    • 1
  • Jerzy Wojewoda
    • 1
  1. 1.Division of DynamicsTechnical University of ŁödzŁödzPoland

Personalised recommendations