Convergence of iterative methods in perturbation theory

  • H. R. Jauslini
  • M. Govin
  • M. Cibils
Part I: Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 457)


We discuss iterative KAM type methods for eigenvalue problems in finite dimensions. We compare their convergence properties with those of straight forward power series expansions.


Unitary Transformation Canonical Transformation Point Spectrum Power Series Expansion Invariant Torus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.I. Arnold; Mathematical Methods of Classical Mechanics, Springer Vlg., 1978.Google Scholar
  2. 2.
    J. Moser; Stable and random motions in dynamical systems, Princeton U. Press, 1973.Google Scholar
  3. 3.
    J. Bellissard; in Trends in the Eighties, edited by S. Albeverio and Ph. Blanchard, World Scientific, Singapore 1985.Google Scholar
  4. 4.
    M. Combescure; Ann. Inst. H.Poincaré 47 (1987) 63; Ann. Phys. 185, 86(1988.Google Scholar
  5. 5.
    P. Blekher, H.R. Jauslin, J.L. Lebowitz; Floquet spectrum for two-level systems in quasiperiodic time dependent fields, J. Stat. Phys. 68, 271 (1992).Google Scholar
  6. 6.
    H.R. Jauslin; Small divisors in driven quantum systems, in Stochasticity and Quantum Chaos, Z. Haba, W. Cegla, L. Jakóbczyk (eds.), Kluwer Publ. 1995.Google Scholar
  7. 7.
    L.H. Eliasson; Absolutely convergent series expansions for quasiperiodic motions, report 2–88, Dept. of Mathematics, University of Stokholm, 1988.Google Scholar
  8. 8.
    G.Gallavotti; Commun. Math, Phys. 164, 145 (1994).Google Scholar
  9. 9.
    A.J. Dragt, J.M. Finn; J. Math. Phys. 17, 2215 (1976).Google Scholar
  10. 10.
    M. Govin, H.R. Jauslin, M. Cibils; in preparation.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • H. R. Jauslini
    • 1
  • M. Govin
    • 1
  • M. Cibils
    • 2
  1. 1.Laboratoire de Physique de l'Université de BourgogneDijonFrance
  2. 2.Institut de Physique Théorique, EPFLLausanneSwitzerland

Personalised recommendations