Anomalous diffusion, spontaneous localizations and the correspondence principle

  • Paolo Grigolini
Part I: Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 457)


We show that the equivalence between quantum and classical physics can be obtained, in the proper limit, by using arguments of ordinary statistical mechanics. It is argued that conditions of statistical mechanics as non ordinary as anomalous diffusion might produce the breakdown of this equivalence


Anomalous Diffusion Correspondence Principle Normal Diffusion Distinct Position Gibbs Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Penrose, Shadows of the Mind, A Search for the Missing Science of Consciousness, Oxford University Press, Oxford (1994).Google Scholar
  2. 2.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).Google Scholar
  3. 3.
    H. Primas, Chemistry, Quantum Mechanics and Reductionism, Springer-Verlag, Berlin, 1983.Google Scholar
  4. 4.
    W.H. Zurek, Phys. Rev. D24 1516 (1981); 26 1862 (1982).Google Scholar
  5. 5.
    W.H. Zurek, in Frontiers of Nonequilibrium Statistical Physics, NATO ASI series. Series B, Physics; vol. 135, Plenum Press, New York (1986) p. 145.Google Scholar
  6. 6.
    W.H. Zurek, Physics Today 44, 36 (1991).Google Scholar
  7. 7.
    N.G. Van Kampen, Physica 20, 603 (1954).Google Scholar
  8. 8.
    S.-K.Ma, Statistical Mechanics, World Scientific, Singapore, 1985.Google Scholar
  9. 9.
    R.J. Cook, Prog. in Optics XXVIII, Elsevier 1990, p. 361.Google Scholar
  10. 10.
    H. Dehmelt, Rev. Mod. Phys. 62, 525 (1990).Google Scholar
  11. 11.
    V.B. Braginsky, and F. Ya. Khalih, Quantum Measurement, Cambridge University Press, Cambridge, 1992.Google Scholar
  12. 12.
    M. Bianucci, R. Mannella, B.J. West and P. Grigolini, Phys. Rev. E50, 2630 (1994).Google Scholar
  13. 13.
    T. Geisel, J. Nierwelberg, and A. Zacherl, Phys. Rev. Lett. 54, 616 (1985).Google Scholar
  14. 14.
    M. Tabor, Chaos and Integrability in Nonlinear Dynamics, John Wiley & Sons, New York (1989).Google Scholar
  15. 15.a
    R. Ishizaki, H. Hata, T. Horita, and H. Mori, Prog. Theor. Phys. 84, 179 (1990)Google Scholar
  16. 15.b
    R. Ishizaki, T. Horita, T. Kobayashi, and H. Mori, Prog. Theor. Phys. 85, 1013 (1991).Google Scholar
  17. 16.
    E.W. Montroll and B.J. West, in Fluctuation Phenomena, 2nd ed. edited by E.W. Montroll and J.L. Lebowitz, Studies in Statistical Mechanics vol 7, North-Holland, Amsterdam, 1987.Google Scholar
  18. 17.
    G. Zumofen and J. Klafter, Phys. Rev. E 47, 851 (1993).Google Scholar
  19. 18.
    G. Zumofen and J. Klafter, Europhysics Letters 25, 565 (1994).Google Scholar
  20. 19.
    G. Trefán, E. Floriani, B.J. West, an P. Grigolini, Phys. Rev. E 50, 2564 (1994).Google Scholar
  21. 20.
    E. Floriani, R. Mannella, P. Grigolini, in preparation.Google Scholar
  22. 21.
    R. Bettin, R. Mannella, B.J. West, P. Grigolini, Phys. Rev. E51, 212 (1995).Google Scholar
  23. 22.
    M. V. Berry, Ann. Phys. 131, 163 (1981).Google Scholar
  24. 23.
    G.P. Berman and G.M. Zaslavsky, Physica A91, 450 (1978).Google Scholar
  25. 24.
    G.M. Zaslavsky, Phys. Rep. 80, 157 (1981).Google Scholar
  26. 25.
    W.H. Zurek and J.P. Paz, Phys. Rev. Lett. 72, 2508 (1994).Google Scholar
  27. 26.
    B.S. Helmkamp and D.A. Brown, Phys. Rev. E49, 1831 (1994).Google Scholar
  28. 27.
    M. Hillery, R.F. O'Connell, M.O. Schully and E.P. Wigner, Phys. Rep. 106, 122 (1984).Google Scholar
  29. 28.
    P. Grigolini, Quantum Irreversibility and Measurement, World Scientific, New York, 1993.Google Scholar
  30. 29.
    R. Roncaglia, L. Bonci, B.J. West and P. Grigolini, submitted to Phys. Rev. E.Google Scholar
  31. 30.
    G.C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D34, 470 (1986).Google Scholar
  32. 31.
    L. Tessieri, D.Vitali, P. Grigolini, submitted to Phys. Rev. E.Google Scholar
  33. 32.
    J. Bayfield and P. Koch, Phys. Rev. Lett. 33, 258 (1974). *** DIRECT SUPPORT *** A3418380 00003Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Paolo Grigolini
    • 1
    • 2
  1. 1.Istituto di Biofisica del Consiglio Nazionale delle RicerchePisaItaly
  2. 2.Department of PhysicsUniversity of North TexasDenton

Personalised recommendations