Quantum coherence and decoherence in a classically chaotic experimentally accessible quantum optical system

  • Robert Graham
Part I: Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 457)


The quantum behavior of classically chaotic systems is dominated by coherence effects. Dynamical localization is the particular coherence effect associated with classical chaotic diffusion. This effect is considered for a system of laser-cooled two-level atoms subject to a standing wave laser field periodically modulated in time. If the field is only turned on during short periodic pulses, momentum is transferred from the field to the atoms only during short kicks and diffuses classically, but is dynamically localized quantally. Spontaneous emission from the two-level atoms perturbs the quantum coherence and resurrects the diffusion of the atomic momentum, albeit with a smaller diffusion constant. The theory of this effect based on a particular linear version of the stochastic Schrödinger equation is discussed.


Chaotic System Spontaneous Emission Dynamical Localization Quantum Coherence Localization Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.a
    A.J. Lichtenberg and M.A. Lieberman, ‘Regular and Stochastic Motion', (Springer, Berlin 1983)Google Scholar
  2. 1.b
    R.S. MacKay and J.D. Meiss (eds.), ‘Hamitonian Dynamical Systems’ (Hilger, Bristol 1987).Google Scholar
  3. 2.
    P. Goetsch, R. Graham and F. Haake, Phys. Rev. A51, 136 (1995); ibid. to appear.Google Scholar
  4. 3.
    G. Casati and B.V. Chirikov (eds.), ‘Quantum Chaos: Between Order and Disorder', (Cambridge Univ. Press, Cambridge 1995).Google Scholar
  5. 4.
    O. Bohigas, S. Tomsovic and D. Ullmo, Phys. Rev. Lett. 64, 1479 (1990); Phys. Rev. Lett. 65, 5 (1990); Phys. Reports 223, 43 (1993).Google Scholar
  6. 5.a
    S. Fishman, in ‘Quantum Chaos', G. Casati, I. Guarneri and U. Smilansky (eds.), (North Holland, Amsterdam 1993)Google Scholar
  7. 5.b
    R.E. Prange, in ‘Chaos and Quantum Chaos', W.D. Heiss (ed.), (Springer, Berlin 1992).Google Scholar
  8. 6.
    See e.g. B.V. Chirikov, in ‘Chaos and Quantum Chaos', W.D. Heiss (ed.), (Springer, Berlin 1992) and references given there.Google Scholar
  9. 7.
    D.L. Shepelyansky, Physica D28, 103 (1987).Google Scholar
  10. 8.
    S. Fishman, R.E. Prange and M. Griniasty, Phys. Rev. A39, 1628 (1989).Google Scholar
  11. 9.
    R. Graham,M. Schlautmann and P. Zoller, Phys. Rev. A45, R19 (1992).Google Scholar
  12. 10.
    R. Graham, M. Schlautmann and D. L. Shepelyansky, Phys. Rev. Lett. 67, 255 (1991).Google Scholar
  13. 11.a
    P.L. Gould et al, Phys. Rev. Lett. 56, 827 (1986)Google Scholar
  14. 11.b
    C. Salomon et al, Phys. Rev. Lett. 59, 1659 (1987)Google Scholar
  15. 11.c
    P.J. Martin et al, Phys. Rev. A36, 2495 (1987)Google Scholar
  16. 11.d
    P.J. Martin et al, Phys. Rev. Lett. 60, 515 (1988).Google Scholar
  17. 12.
    F.L. Moore, J.C. Robinson, C. Bharucha, P.E. Williams and M.G. Raizen, Phys. Rev. Lett. 73, 2974 (1994).Google Scholar
  18. 13.
    J.C. Robinson, C. Bharucha, F.L. Moore, R. Jahnke, G.A. Georgakis, Q. Niu and M.G. Raizen, Phys. Rev. Lett., to appear.Google Scholar
  19. 14.a
    S. Fishman, D.R. Grempel and R.E. Prange, Phys. Rev. Lett. 49, 509 (1982)Google Scholar
  20. 14.b
    D.R. Grempel, R.E. Prange and S. Fishman, Phys. Rev. A29, 1639 (1984).Google Scholar
  21. 15.
    D.L. Shepelyansky, Phys. Rev. Lett. 56, 677 (1986).Google Scholar
  22. 16.
    G. Casati, R. Graham, I. Guarneri and F. Izrailev, Phys. Lett. A190, 159 (1994).Google Scholar
  23. 17.a
    T. Dittrich and U. Smilansky, Nonlinearity 4, 59 (1991)Google Scholar
  24. 17.b
    R. Blümel and U. Smilansky, Phys. Rev. Lett. 69, 217 (1992).Google Scholar
  25. 18.
    D. Weaire and V. Srivasta, J. Phys. C10, 4309 (1977).Google Scholar
  26. 19.a
    R. Blümel and U. Smilansky, Phys. Rev. A30, 1040 (1984)Google Scholar
  27. 19.b
    F.M. Izrailev, J. Phys. A22, 865 (1989).Google Scholar
  28. 20.a
    K. Mølmer, Y. Castin and J. Dalibard, J. Opt. Soc. Am. B10, 524 (1993)Google Scholar
  29. 20.b
    R. Dum, P. Zoller and H. Ritsch, Phys. Rev. A45, 4879 (1992).Google Scholar
  30. 21.
    P. Goetsch and R. Graham, Phys. Rev. A50, 5242 (1994).Google Scholar
  31. 22.
    A. Barchielli, preprint IFUM 449/FT (1993).Google Scholar
  32. 23.a
    H.M. Wiseman and G.J. Milburn, Phys. Rev. A47, 1652 (1993)Google Scholar
  33. 23.b
    S. Dyrting and G.J. Milburn, Phys. Rev. A, to appear.Google Scholar
  34. 24.
    M. Schlautmann and R. Graham, Phys. Rev. E, to appear.Google Scholar
  35. 25.
    R. Graham and S. Miyazaki, ‘Dynamical localization of atomic De Broglie waves: the influence of spontaneous emission', preprint 1995.Google Scholar
  36. 26.
    E. Ott, T.M. Antonsen and J.D. Hanson, Phys. Rev. Lett. 53, 2187 (1984).Google Scholar
  37. 27.a
    T. Dittrich and R. Graham, Ann. Phys. (N.Y.) 200, 363 (1990)Google Scholar
  38. 27.b
    D. Cohen, Phys. Rev. A43, 639 (1991); 44, 2292 (1991).Google Scholar
  39. 28.
    B.V. Chirikov and D.L. Shepelyansky, Sov. Phys. Tech. Phys. 27, 156 (1982).Google Scholar
  40. 29.
    J.P. Bardroff, I. Bialynicki-Birula, D.S. Krähmer, G. Kurizki, E. Mayr, P. Stifter and W.P. Schleich, preprint 1995.Google Scholar
  41. 30.
    E.J. Galvez, B.E. Sauer, L. Moorman, P.M. Koch and D. Richards, Phys. Rev. Lett. 61, 2011 (1988).Google Scholar
  42. 31.
    J.E. Bayfield, G. Casati, I. Guarneri and D.W. Sokol, Phys. Rev. Lett. 63, 364 (1989).Google Scholar
  43. 32.
    R. Blümel, R. Graham, L. Sirko, U. Smilansky, H. Walther and K. Yamada, Phys. Rev. Lett. 62, 341 (1989).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Robert Graham
    • 1
  1. 1.Fachbereich PhysikUniversität-Gesamthochschule EssenEssenGermany

Personalised recommendations