Advertisement

Wave mechanics: The interplay between stochastics and quanta

  • A.M. Cetto
  • L. de la Peña
Part I: Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 457)

Abstract

The authors make an attempt to understand the wave aspects of quantum mechanics within the framework of stochastic electrodynamics. The electron, considered originally as a point particle, is seen to perform a fine vibration of wave-number k c = mc/ħ sustained by the zeropoint radiation field; its interaction with the field waves of frequencies close to ω c = ck c gives rise to a modulation wave with de Broglie's wavelength. A heuristic analysis leads to the construction of the wave equation for the modulation amplitude. A few simple examples are given to illustrate the appearance of interference phenomena and quantization as the result of demanding that a standing modulation characterizes any stationary dynamical situation.

Keywords

Interference Pattern Point Particle Wave Mechanics Casimir Force Radiation Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. de la Peña, in Stochastic Processes Applied to Physics and Other Related Fields, B. Gómez et al., eds. (World Scientific, Singapore, 1983).Google Scholar
  2. 2.a
    T.W. Marshall and E. Santos, in Problems in Quantum Physics: Gdansk '87, L. Kostro et al., eds. (World Scientific, Singapore, 1988)Google Scholar
  3. 2.b
    A. V. Barranco, S.A. Brunini and H.M. França, Phys. Rev. A39, 5492 (1989)Google Scholar
  4. 2.c
    A.M. Cetto and L. de la Peña, Found. Phys. 19, 419 (1989)Google Scholar
  5. 2.d
    A. Rueda, Space Science Rev. 53, 223 (1990); D.C. Cole, Found. Phys. 20, 225 (1990).Google Scholar
  6. 3.
    L. de la Peña and A.M. Cetto, Rev. Mex. Fis. 39, 653 (1993), Found Phys. 24, 917 (1994), 25 (1995), in press.Google Scholar
  7. 4.
    A.F. Kracklauer, Phys. Essays 5, 226 (1992).Google Scholar
  8. 5.a
    L. de la Pena and A.M. Cetto, Ann. Fond. L. de Broglie (special issue) 311 (1993), Found. Phys. 24, 753 (1994)Google Scholar
  9. 5.b
    A.M. Cetto and L. de la Peña, in Proceedings of the Oviedo Symposium on Fundamental Problems in Quantum Physics, M. Ferrero and A. van der Merwe, eds (World Scientific, Singapore, 1995).Google Scholar
  10. 6.
    L. de Broglie, Une Tentative d'Interprétation causale et non linéaire de la Mécanique Ondulatoire (Gauthier-Villars, Paris, 1956); C.R.Acad. Sci. Paris 277B, 71 (1973). For a modern presentation of de Broglie's theory see F. Selleri, Quantum Paradoxes and Physical Reality (Kluwer, Netherlands, 1990).Google Scholar
  11. 7.a
    T.W. Marshall, Nuovo Cim. 38, 206 (1965)Google Scholar
  12. 7.b
    T.H. Boyer, Phys. Rev. 174, 1764 (1968).Google Scholar
  13. 8.
    L. de la Peña and A.M. Cetto, book in preparation, chapter 3.Google Scholar
  14. 9.
    L. de la Peña, J.L. Jiménez and R. Montemayor, Nuovo Cim. B 69, 71 (1982).Google Scholar
  15. 10.
    G.H. Goedecke, Found. Phys. 13, 1121 (1983), appendix B.Google Scholar
  16. 11.
    P.W. Milonni, The Quantum Vacuum (Academic Press, San Diego 1994).Google Scholar
  17. 12.
    See, e.g., H.C. Corben, Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco, 1968) and references therein.Google Scholar
  18. 13.a
    W.J. Lehr and J.L. Park, J. Math. Phys. 18, 1235 (1977)Google Scholar
  19. 13.b
    B. Gaveau, T. Jacobson, M. Kac and L.S. Schulman, Phys. Rev. Lett. 53, 419 (1984).Google Scholar
  20. 14.
    A. Rueda, Found. Phys. Lett. 6, 75 (1993).Google Scholar
  21. 15.
    G. Cavalleri, Lett. Nuovo Cim. 43, 285 (1985).Google Scholar
  22. 16.
    See, e.g., J.C.H. Spence, Experimental High-Resolution Electron Microscopy, 2nd. ed. (Oxford U.P., Oxford, 1988), chapter 4.Google Scholar
  23. 17.
    J.L. Synge, Geometrical Mechanics and de Broglie Waves (Cambridge U.P., Cambridge, 1954).Google Scholar
  24. 18.
    See e.g. D.M. Greenberger, Rev. Mod. Phys. 55, 875 (1983).Google Scholar
  25. 19.
    R. Colella, A.W. Overhauser and S.A. Werner, Phys. Rev. Lett. 34, 1472 (1975).Google Scholar
  26. 20.
    H. Rauch, A. Zeilinger, G. Badurek, A. Wilfing, W. Bauspiess and U. Bonse, Phys. Lett. A54, 425 (1975).Google Scholar
  27. 21.
    Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • A.M. Cetto
    • 1
  • L. de la Peña
    • 1
  1. 1.Instituto de FísicaUNAMMexico D.F.

Personalised recommendations