Skip to main content

Metafinite model theory

  • Conference paper
  • First Online:
Logic and Computational Complexity (LCC 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 960))

Included in the following conference series:

Abstract

Motivated by computer science challenges, we suggest to extend the approach and methods of finite model theory beyond finite structures.

Partially supported by NSF grant CCR 92-04742 and ONR grant N00014-94-1-1182.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases, Addison Wesley (1994).

    Google Scholar 

  2. S. Abiteboul and V. Vianu, Generic Computation and Its Complexity, Proceedings of 23rd ACM Symposium on Theory of Computing (1991), 209–219.

    Google Scholar 

  3. L. Adleman and K. Manders, Computational complexity of decision problems for polynomials, Proceedings of 16th IEEE Symposium on Foundations of Computer Science (1975), 169–177.

    Google Scholar 

  4. L. Adleman and K. Manders, Diophantine Complexity, Proceedings of 17th IEEE Symposium on Foundations of Computer Science (1976), 81–88.

    Google Scholar 

  5. S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof verification and intractability of approximation problems, Proceedings of 33rd IEEE Symposium on Foundations of Computer Science (1992), 210–214.

    Google Scholar 

  6. J. Barwise, On Moschovakis closure ordinals, Journal of Symbolic Logic 42 (1977), 292–296.

    Google Scholar 

  7. L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bull. Amer. Math. Soc.21 (1989), 1–46.

    Google Scholar 

  8. E. Börger, Annotated Bibliography on Evolving Algebras, in: E. Börger (Ed.), Specification and Validation Methods, Oxford University Press, to appear.

    Google Scholar 

  9. J. Cai, M. FĂ¼rer and N. Immerman, An Optimal Lower Bound on the Number of Variables for Graph Identification, Proceedings of 30th IEEE Symposium on Foundations of Computer Science (1989), 612–617.

    Google Scholar 

  10. A. Chandra and D. Harel, Computable Queries for Relational Data Bases, Journal of Computer and System Sciences 21 (1980), 156–178.

    Article  Google Scholar 

  11. K. Compton, 0-1 Laws in Logic and Combinatorics, in: NATO Adv. Study Inst. on Algorithms and Order, I. Rival (Ed.), 1988, 353–383.

    Google Scholar 

  12. K. Compton, C. Henson and S. Shelah, Nonconvergence, undecidability and intractability in asymptotic problems, Annals of Pure and Applied Logic 36 (1987), 207–224.

    Article  Google Scholar 

  13. P. Crescenzi and V. Kann, A compendium of NP optimization problems, preprint (1995).

    Google Scholar 

  14. A. Dawar, Feasible Computation through Model Theory, PhD thesis, University of Pennsylvania (1993).

    Google Scholar 

  15. R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, SIAM-AMS Proceedings 7 (1974), 43–73.

    Google Scholar 

  16. E. Grädel and K. Meer, Descriptive Complexity Theory over the Real Numbers, Proceedings of 27th ACM Sympposium on Theory of Computing (1995).

    Google Scholar 

  17. E. Grädel and M. Otto, Inductive Definability with Counting on Finite Structures, in: Selected Papers, 6th Workshop on Computer Science Logic CSL 92, San Miniato 1992, Lecture Notes in Computer Science Nr. 702, Springer (1993), 231–247.

    Google Scholar 

  18. J. Gross and T. Tucker, Topological Graph Theory, Wiley, New York (1987).

    Google Scholar 

  19. S. Grumbach and J. Su, Finitely representable databases, Proceedings of 13th ACM Symposium on Principles of Database Systems (1994).

    Google Scholar 

  20. Y. Gurevich, Toward logic tailord for computational complexity, in: M. M. Richter et al. (Eds), Computation and Proof Theory, Springer Lecture Notes in Mathematics Nr. 1104 (1984), 175–216.

    Google Scholar 

  21. Y. Gurevich, Logic and the Challenge of Computer Science, in: E. Börger (Ed), Trends in Theoretical Computer Science, Computer Science Press (1988), 1–57.

    Google Scholar 

  22. Y. Gurevich, Evolving Algebras 1993: Lipari Guide, in: E. Börger (Ed.), Specification and Validation Methods, Oxford University Press, to appear.

    Google Scholar 

  23. Y. Gurevich and S. Shelah, Fixed Point Extensions of First Order Logic, Annals of Pure and Applied Logic 32 (1986), 265–280.

    Article  Google Scholar 

  24. T. Hirst and D. Harel, Completeness Results for Recursive Databases, Journal of Computer and System Sciences, to appear. (Also: 12th ACM Symp. on Principles of Database Systems (1993), 244–252.)

    Google Scholar 

  25. T. Hirst and D. Harel, More about Recursive Structures: Zero-One Laws and Expressibility vs. Complexity, unpublished (1995).

    Google Scholar 

  26. B. Hodgson and C. Kent, A Normal form for Arithmetical Representation of NP-sets, Journal of Computer and System Sciences 27 (1983), 378–388.

    Google Scholar 

  27. N. Immerman, Upper and lower bounds for first-order expressibility, Journal of Computer and Systems Sciences 25 (1982), 86–104.

    Google Scholar 

  28. N. Immerman, Relational Queries Computable in Polynomial Time, Information and Control 68 (1986), 86–104.

    Article  Google Scholar 

  29. N. Immerman, Expressibility as a Complexity Measure: Results and Directions, Proc. of 2nd Conf. on Structure in Complexity Theory (1987), 194–202.

    Google Scholar 

  30. N. Immerman, Descriptive and Computational Complexity, in: J. Hartmanis (Ed.), Computational Complexity Theory, Proc. of AMS Symposia in Appl. Math. 38 (1989), 75–91.

    Google Scholar 

  31. N. Immerman and E. Lander, Describing Graphs: A First Order Approach to Graph Canonization, in: A. Selman (Ed), Complexity Theory Retrospective. (In Honor of Juris Hartmanis), Springer, New York 1990, 59–81.

    Google Scholar 

  32. J. Jones and Y. Matijasevich, Register machine proof of the theorem of exponential diophantine representation of enumerable sets, Journal of Symbolic Logic 49 (1984), 818–829.

    Google Scholar 

  33. F. Kabanza, J. Stevenne and P. Wolper, Handling Infinite Temporal Data, to appear in Journal of Computer and System Sciences. A preliminary version appeared in Proceedings of 9th ACM Syposium on Principles of Database Systems (1990).

    Google Scholar 

  34. P. Kanellakis, Elements of Relational Database Theory, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, vol. B, North Holland, Amsterdam 1990, pp. 1073–1156.

    Google Scholar 

  35. P. Kanellakis, G. Kuper and P. Revesz, Constraint Query Languages, Proceedings of 9th ACM Symposium on Principles of Database Systems (1990), 299–313.

    Google Scholar 

  36. C. Kent and B. Hodgson, An arithmetical characterization of NP, Theoretical Computer Science 12 (1982), 255–267.

    Google Scholar 

  37. J. Lynch, Almost sure theories, Annals of Mathematical Logic 18 (1980), 91–135.

    Google Scholar 

  38. Y. Matijasevich, Hilbert's Tenth Problem, MIT Press, Cambridge (1993).

    Google Scholar 

  39. M. Otto, Generalized Quantifiers for Simple Properties, Proceedings of IEEE Symposium on Logic in Computer Science (1994), 30–39.

    Google Scholar 

  40. M. Otto, The Expressive Power of Fixed-Point Logic with Counting, Journal of Symbolic Logic, to appear.

    Google Scholar 

  41. M. Otto, Habilitationsschrift, RWTH Aachen 1995.

    Google Scholar 

  42. C. Papadimitriou and M. Yannakakis, Optimization, approximization and complexity classes, Journal of Computer and System Sciences 43 (1991), 425–440.

    Article  Google Scholar 

  43. B. Poizat, Deux ou trois choses que je sais de Ln, Journal of Symbolic Logic 47 (1982), 641–658.

    Google Scholar 

  44. S. Shelah, The very weak zero-one law for random graphs with order and random binary functions, preprint (1994).

    Google Scholar 

  45. J. Spencer, Nonconvergence in the theory of random orders, Order 7 (1991), 341–348.

    Google Scholar 

  46. J. Tyszkiewicz, private communication.

    Google Scholar 

  47. J. D. Ullman, Database and Knowledge-Base Systems, Vol. I and II, Computer Science Press (1989).

    Google Scholar 

  48. M. Vardi, Complexity of Relational Query Languages, Proc. of 14th Symposium on Theory of Computing (1982), 137–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Daniel Leivant

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grädel, E., Gurevich, Y. (1995). Metafinite model theory. In: Leivant, D. (eds) Logic and Computational Complexity. LCC 1994. Lecture Notes in Computer Science, vol 960. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60178-3_92

Download citation

  • DOI: https://doi.org/10.1007/3-540-60178-3_92

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60178-4

  • Online ISBN: 978-3-540-44720-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics