Skip to main content

An experimental study of N-Person Iterated Prisoner's Dilemma games

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 956))

Abstract

The Iterated Prisoner's Dilemma game has been used extensively in the study of the evolution of cooperative behaviours in social and biological systems. There have been a lot of experimental studies on evolving strategies for 2-player Iterated Prisoner's Dilemma games (2IPD). However, there are many real world problems, especially many social and economic ones, which cannot be modelled by the 2IPD. The n-player Iterated Prisoner's Dilemma (NIPD) is a more realistic and general game which can model those problems. This paper presents two sets of experiments on evolving strategies for the NIPD. The first set of experiments examine the impact of the number of players in the NIPD on the evolution of cooperation in the group. Our experiments show that cooperation is less likely to emerge in a large group than in a small group. The second set of experiments study the generalisation ability of evolved strategies from the point of view of machine learning. Our experiments reveal the effect of changing the evolutionary environment of evolution on the generalisation ability of evolved strategies.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. M. Colman, Game Theory and Experimental Games, Pergamon Press, Oxford, England, 1982.

    Google Scholar 

  2. A. Rapoport, Optimal policies for the prisoner's dilemma, Technical Report 50, The Psychometric Lab., Univ. of North Carolina, Chapel Hill, NC, USA, July 1966.

    Google Scholar 

  3. G. Hardin, The tragedy of the commons, Science, 162:1243–1248, 1968.

    Google Scholar 

  4. J. H. Davis, P. R. Laughlin, and S. S. Komorita, The social psychology of small groups, Annual Review of Psychology, 27:501–542, 1976.

    Google Scholar 

  5. N. S. Glance and B. A. Huberman, The outbreak of cooperation, Journal of Mathematical Sociology, 17(4):281–302, 1993.

    Google Scholar 

  6. N. S. Glance and B. A. Huberman, The dynamics of social dilemmas, Scientific American, pages 58–63, March 1994.

    Google Scholar 

  7. R. Axelrod, The evolution of strategies in the iterated prisoner's dilemma, In L. Davis, editor, Genetic Algorithms and Simulated Annealing, chapter 3, pages 32–41. Morgan Kaufmann, San Mateo, CA, 1987.

    Google Scholar 

  8. D. M. Chess, Simulating the evolution of behaviors: the iterated prisoners' dilemma problem, Complex Systems, 2:663–670, 1988.

    Google Scholar 

  9. K. Lindgren, Evolutionary phenomena in simple dynamics, In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II: SFI Studies in the Sciences of Complexity, Vol. X, pages 295–312, Reading, MA, 1991. Addison-Wesley.

    Google Scholar 

  10. D. B. Fogel, The evolution of intelligent decision making in gaming, Cybernetics and Systems: An International Journal, 22:223–236, 1991.

    Google Scholar 

  11. D. B. Fogel, Evolving behaviors in the iterated prisoner's dilemma, Evolutionary Computation, 1(1):77–97, 1993.

    Google Scholar 

  12. P. J. Darwen and X. Yao, On evolving robust strategies for iterated prisoner's dilemma, In X. Yao, editor, Proc. of the AI'93 Workshop on Evolutionary Computation, pages 49–63, Canberra, Australia, November 1993. University College, UNSW, Australian Defence Force Academy.

    Google Scholar 

  13. W. Daniel Hillis, Co-evolving parasites improve simulated evolution as an optimization procedure, In Santa Fe Institute Studies in the Sciences of Complexity, Volume 10, pages 313–323. Addison-Wesley, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Xin Yao

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yao, X., Darwen, P.J. (1995). An experimental study of N-Person Iterated Prisoner's Dilemma games. In: Yao, X. (eds) Progress in Evolutionary Computation. EvoWorkshops EvoWorkshops 1993 1994. Lecture Notes in Computer Science, vol 956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60154-6_50

Download citation

  • DOI: https://doi.org/10.1007/3-540-60154-6_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60154-8

  • Online ISBN: 978-3-540-49528-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics