Advertisement

How lower and upper complexity bounds meet in elimination theory

  • Luis M. Pardo
Invited Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 948)

Keywords

Polynomial Time Arithmetic Operation Turing Machine Polynomial Time Algorithm Computer Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Balcazar, J.L. Díaz and J. Gabarró. “Structural Complexity I”. EATCS Mon. on Theor. Comp. Sci. 11, Springer (1988).Google Scholar
  2. 2.
    W. Baur, V. Strassen. “The complexity of partial derivatives”. Theoret. Comput. Sci. 22 (1982) 317–330.Google Scholar
  3. 3.
    D. Bayer. “The Division Algorithm and the Hilbert Scheme”. Ph. D. Thesis. Harvard University (1982)Google Scholar
  4. 4.
    D. Bayer, D. Mumford. “What can be computed in algebraic geometry?”. In Computational Algebraic Geometry and Commutative Algebra”, Proc. of the Cortona Conf. on Comp. Algebraic Geometry and Commutative Algebra, D. Eisenbud and L. Robbiano (eds.). Symposia Matematica, vol. XXXIV, Istituto Nazionale di Alta Matematica, Cambridge University Press (1993) 1–49.Google Scholar
  5. 5.
    E. Becker, J.P. Cardinal, M.F. Roy, Z. Szafraniec. “Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula”. To appear in Proc. MEGA'94, Brikhaüsser Progress in Math.Google Scholar
  6. 6.
    M. Ben-Or. “Lower Bounds for Algebraic Computation Trees.” In ACM 15 th Symposium on Theory of Computation, (1983) 80–86.Google Scholar
  7. 7.
    S.J. Berkowitz.“On computing the determinant in small parallel time using a small number of processors”, Inf. Proc. Letters 18 (1984) 147–150.Google Scholar
  8. 8.
    C. Berenstein and A. Yger. “Effective Bézout identities in Q[X 1,...,X n]”, Acta Math., 166 (1991) 69–120.Google Scholar
  9. 9.
    C. Berenstein and A. Yger. “Une Formule de Jacobi et ses conséquences”, Ann. Sci. E.N.S., 4 ieme série, 24 (1991) 363–377.Google Scholar
  10. 10.
    L. J. Billera, I. M. Gel'fand and B. Sturmfels. “Duality and Minors of Secondary Polyhedra.” J. Combinatorial Theory, Vol. 57, No. 2 (1993) 258–268.Google Scholar
  11. 11.
    L. Blum, M. Shub and S. Smale; “On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines”. Bulletin of the Amer. Math. Soc., vol.21, n. 1, (1989) 1–46.Google Scholar
  12. 12.
    E. Borel. “La définition en mathématiques”. In Les Grands Courants de la Pensée Mathématique, Cahiers du Sud, Paris, (1948), 24–34.Google Scholar
  13. 13.
    A. Borodin. “On Relating Time and Space to Size and Depth”. SIAM J. on Comp. 6 (1977) 733–744.Google Scholar
  14. 14.
    A. Borodin, J. Munro. “The Computational Complexity of Algebraic and Numeric Problems”. Elsevier, NY, (1972).Google Scholar
  15. 15.
    J.-B. Bost, H. Gillet and C. Soulé. “Un analogue arithmétique du théorème de Bézout”, C.R. Acad. Sci. Paris, t. 312, Série I (1991) 845–848.Google Scholar
  16. 16.
    J.-B. Bost, H. Gillet and C. Soulé. “Heights of projective varieties and positive Green forms”, Manuscrit I.H.E.S. (1993).Google Scholar
  17. 17.
    D. W. Brownawell. “Bounds for the degree in the Nullstellensatz”, Annals of Math. 126 (1987) 577–591.Google Scholar
  18. 18.
    D.W. Brownawell. “Local Diophantine Nullstellen inequalities”, J. Amer. Math. Soc. 1 (1988) 311–322.Google Scholar
  19. 19.
    B. Buchberger. “Gröbner bases: An algorithmic method in polynomial ideal theory”. In Multidimensional System Theory (N.K. Bose, ed.), Reidel, Dordrecht (1985) 374–383.Google Scholar
  20. 20.
    L. Caniglia, A. Galligo and J. Heintz. “Borne simplement exponentielle pour les degrés dans le théorème des zéros sur un corps de caractéristique quelconque”, C.R. Acad. Sci. Paris, t. 307 Série I (1988) 255–258.Google Scholar
  21. 21.
    L. Caniglia, A. Galligo and J. Heintz. “Some new effectivity bounds in computational geometry”. In Proc. AAECC-6, (T. Mora. ed.), Springer LNCS 357 (1989) 131–151.Google Scholar
  22. 22.
    J.P. Cardinal. “Dualité et algorithmes itératives pour la solution des systémes polynomiaux”. Thése, U. de Rennes I (1993).Google Scholar
  23. 23.
    F. Cucker, J.L. Montaña, L.M. Pardo.“Time Bounded Computations over the reals”. Int. J. of Alg. and Comp., Vol.2, No. 4, (1992) 395–408.Google Scholar
  24. 24.
    F. Cucker, M. Shub, S. Smale. “Separation of complexity lasses in Koiran's weak model”. Theor. Comp. Sci. 133, N. 1, (1994) 3–15.Google Scholar
  25. 25.
    J. Davenport, J. Heintz. “Real quantifier elimination is doubly exponential”. J. Symbolic Computation 5 (1988) 29–35. Reprinted in: Algorithms in Real Algebraic Geometry, ed. by Denis A. Arnon and Bruno Buchberger, Academic Press (1988) 29–35.Google Scholar
  26. 26.
    D. Duval.“Diverses Questions Relatives au Cacul Formel avec des Nombres Algèbriques”. Thèse d' Etat, Grenoble (1987).Google Scholar
  27. 27.
    N. Fitchas, M. Giusti and F. Smietanski. “Sur la complexité du théorème des zéros”, Manuscript Ecole Polytechnique (1993).Google Scholar
  28. 28.
    N. Fitchas, A. Galligo, J. Morgenstern. “Algorithmes rapides en séquentiel et en parallele pour l'élimination de quantificateurs en géométrie élémentaire”. Seminaire de Structures Algebriques Ordennes, Université de Paris VII (1987).Google Scholar
  29. 29.
    M. Garey, D. Johnson. “Computers and Intractability: A Guide to the Theory of NP-completeness”. Freeman, San Francisco (1979).Google Scholar
  30. 30.
    J. von zur Gathen. “Parallel algorithms for algebraic problems”. SIAM J. Comput., Vol. 13, No. 4 (1984) 802–824Google Scholar
  31. 31.
    J.Von zur Gathen.“Parallel arithmetic computations: a survey”. In Proc. 13 th Mathematical Foundations on computer Science, (1986) 93–112.Google Scholar
  32. 32.
    J. von zur Gathen. “Algebraic Complexity Theory”. Annual Review of Computer Science, vol. 3 (1988).Google Scholar
  33. 33.
    A.O. Gel'fond. “Transcendental and Algebraic Numbers”. Dover, NY (1960).Google Scholar
  34. 34.
    P. Gianni, T. Mora. “Algebraic solution of systems of polynomial equations using Gröbner bases”. In Proc. AAECC-5, LNCS 356 (1989) 247–257.Google Scholar
  35. 35.
    M. Giusti and J. Heintz. “Algorithmes-disons rapides-pour la décomposition d'une variété algébrique en composantes irréductibles et équidimensionelles”, In Proc. MEGA '90, Birkhäuser Progress in Math. 94, (T. Mora and C. Traverso, eds.) (1991) 169–193.Google Scholar
  36. 36.
    M.Giusti and J.Heintz. “La détermination des points isolés et de la dimension d'une variété algébrique peut se faire en temps polynomial”. In Computational Algebraic Geometry and Commutative Algebra”, Proc. of the Cortona Conf. on Comp. Algebraic Geometry and Commutative Algebra, D. Eisenbud and L. Robbiano (eds.). Symposia Matematica, vol. XXXIV, Istituto Nazionale di Alta Matematica, Cambridge University Press (1993) 216–256.Google Scholar
  37. 37.
    M. Giusti, J. Heintz and J. Sabia. “On the efficiency of effective Nullstellensätze”. Computational Complexity 3 (1993) 56–95.Google Scholar
  38. 38.
    M. Giusti, J. Heintz, J.E. Morais, L.M. Pardo. “When polynomial equation systems can be solved’ fast’ ?”. In this volume (1995).Google Scholar
  39. 39.
    L. Gonzalez Vega. “Determinantal formulae for the solution set of zero-dimensional ideals”. J. of Pure and App. Algebra, 76 (1991) 57–80.Google Scholar
  40. 40.
    D. Yu. Grigor'ev. “Lower Bounds in Algebraic Computational Complexity”. J. of Soviet Mathematics, 4 (1988) 65–108.Google Scholar
  41. 41.
    P. Gritzmann and B. Sturmfels. “Minkowski Addition of Polytopes: Computational Complexity and Applications to Gröbner Bases.” SIAM J. Disc. Math., Vol. 6, No. 2 (1993) 246–269.Google Scholar
  42. 42.
    J. Heintz. “Definability and fast quantifier elimination over algebraically closed fields”. Theor. Comp. Science 24, (1983) 239–278.Google Scholar
  43. 43.
    J. Heintz. “On the computational complexity of polynomials and bilinear mappings”, Proc. AAECC-5, Springer LNCS 356 (1989) 269–300.Google Scholar
  44. 44.
    J. Heintz, T. Recio and M.F. Roy. “Algorithms in Real Algebraic Geometry and Applications to Computational Geometry”. DIMACS series in Discrete Math. and Theor. Comp. Sci. 6 (1991) 137–162.Google Scholar
  45. 45.
    J. Heintz, M.-F. Roy and P. Solerno. “Sur la Complexité du Principe de Tarski-Seidenberg”. Bull. Soc. Math. de France 118, (1990) 101–126.Google Scholar
  46. 46.
    J. Heintz and J. Morgenstern. “On the intrinsic complexity of elimination theory”. J. of Complexity 9 (1993) 471–498.Google Scholar
  47. 47.
    J. Heintz and C.P. Schnorr. “Testing Polynomials wich are easy to compute”. In Logic and Algorithmic (an International Symposium in honour of Ernst Specker), Monographie n. 30 de l'Enseignement Mathématique (1982) 237–254. A preliminary version appeared in Proc. 12th Ann. ACM Symp. on Computing (1980) 262–268.Google Scholar
  48. 48.
    J. Heintz and M. Sieveking. “Lower Bounds for polynomials with algebraic coefficients”, Theoret. Comp. Sci. 11 (1980) 321–330.Google Scholar
  49. 49.
    G. Hermann. “Die Frage der endlich vielen Schritte in der Theorie der Polynomideale”. Math. Ann. 95 (1926) 736–788.Google Scholar
  50. 50.
    F. Hurtado and M. Noy. “Ears of triangulations and Catalan numbers”. To appear in Discrete Mathematics.Google Scholar
  51. 51.
    O.H. Ibarra, S. Moran. “Equivalence of Straight-Line Programs”. J. of the ACM 30 (1983) 217–228.Google Scholar
  52. 52.
    O.H. Ibarra, S. Moran, E. Rosier. “Probabilistic algorithms and straight-line programs for some rank decision problems”. Inf. Proc. Letters, Vol. 12, No. 5 (1981) 227–232.Google Scholar
  53. 53.
    E. Kaltofen. “Greatest common divisors of polynomials given by straight-line programs”. J. of the ACM, 35 No. 1 (1988) 234–264.Google Scholar
  54. 54.
    D.E. Knuth. “The Art of Programming (vol. 2): Semi-numerical Algorithms” Addison-Wesley (1981).Google Scholar
  55. 55.
    E. Kaltofen. “Factorization of Polynomials given by straight-line programs”. In Randomness in Computation, Advances in Computing Research 5 (1989) 375–412Google Scholar
  56. 56.
    H. Kobayashi, T. Fujise and A. Furukawa. “Solving systems of algebraic equations equations by general elimination method”. J. Symb. Comp. 5 (1988) 303–320.Google Scholar
  57. 57.
    J. Kollár. “Sharp Effective Nullstllensatz”, J. of AMS. 1 (1988) 963–975.Google Scholar
  58. 58.
    T. Krick, Luis M. Pardo. “Une approche informatique pour l'approximation diophantienne”. Comptes Rendues de l'Acad. des Sci. Paris, t. 318, Série I, no. 5, (1994) 407–412.Google Scholar
  59. 59.
    T. Krick, L.M. Pardo. “A Computational Method for Diophantine Approximation”. To appear in Proc. MEGA'94, Birkhäusser Verlag, (1995).Google Scholar
  60. 60.
    H.T. Kung. “New algorithms and lower bounds for the parallel evaluation of certain rational expressions and recurrences”. J. of the ACM, 23, (1976) 534–543.Google Scholar
  61. 61.
    D. Lazard. “Résolution des systèmes d'équations algébriques”, Theor. Comp. Sci. 15 (1981) 77–110.Google Scholar
  62. 62.
    D. Lazard. “Systems of Algebraic Equations (Algorithms and Complexity)”. In Computational Algebraic Geometry and Commutative Algebra”, Proc. of the Cortona Conf. on Comp. Algebraic Geometry and Commutative Algebra, D. Eisenbud and L. Robbiano (eds.). Symposia Matematica, vol. XXXIV, Istituto Nazionale di Alta Matematica, Cambridge University Press (1993) 216–256.Google Scholar
  63. 63.
    A.K. Lenstra, H.W. Lenstra. “Algorithms in Number Theory”. In Handbook of Theoretical Computer Science, Elsevier, ch. 12 (1990) 673–715.Google Scholar
  64. 64.
    M. Li and P.M.B. Vitányi. “Kolmogorov Complexity and its Applications”. In Handbook of Theoretical Computer Science, Elsevier, ch. 4 (1990) 187–254.Google Scholar
  65. 65.
    D. W. Masser and G. Wüstholz. “Fields of large transcendence degree generated by values of elliptic functions”, Invent. Math. 72 (1971) 407–463.Google Scholar
  66. 66.
    G. Matera. “Integration of multivariate rationals functions given by straight-line programs”. In this volume (1995).Google Scholar
  67. 67.
    G. Matera, J.M. Turull. “The complexity of elimination: upper bounds”. Work in preparation (1995).Google Scholar
  68. 68.
    E. Mayr. “Membership in Polynomial Ideals over 67-02 Is Exponential Space Complete”.Google Scholar
  69. 69.
    E. Mayr and A. Meyer. “The complexity of the word problem for commutative semigroups“, Advances in Math. 46 (1982) 305–329.Google Scholar
  70. 70.
    M. Mignotte. “Mathématiques pour le Cacul Formel”, Presses Univ. de France (1989).Google Scholar
  71. 71.
    J.L. Montaña and L.M. Pardo.“Lower bounds for Arithmetic Networks”. AAECC 4 (1993) 1–24.Google Scholar
  72. 72.
    J.L. Montaña, J.E. Morais, L.M. Pardo. “Lower Bounds for Arithmetic Networks II:Sum of Betti Numbers”.To appear in AAECC 7 (1995).Google Scholar
  73. 73.
    T. Mora, L. Robbiano. “Points in Affine and Projective Sapces”. In Computational Algebraic Geometry and Commutative Algebra”, Proc. of the Cortona Conf. on Comp. Algebraic Geometry and Commutative Algebra, D. Eisenbud and L. Robbiano (eds.). Symposia Matematica, vol. XXXIV, Istituto Nazionale di Alta Matematica, Cambridge University Press (1993) 216–256.Google Scholar
  74. 74.
    K. Mulmuley. “A fast parallel algorithmn to compute the rank of a matrix over an arbitrary field”. COMBINATORICA, 7(1) (1987) 101–104.Google Scholar
  75. 75.
    Newton,I. “De Analysi per Aequationes Infinitas”. (1667).Google Scholar
  76. 76.
    A.M. Ostrowski.“On two problems in abstract algebra connected with Horner's rule”. In Studies in Math. and Mech. presented to Richard von Mises Academicv Press (1954) 40–48.Google Scholar
  77. 77.
    P. Philippon.“Sur des hauteurs alternatives, I”. Math. Ann. 289 (1991) 255–283.Google Scholar
  78. 78.
    P. Philippon. “Sur des hauteurs alternatives, II”. Ann. Inst. Fourier, Grenoble 44, 2 (1994) 1043–1065.Google Scholar
  79. 79.
    P. Philippon.“Sur des hauteurs alternatives, III”. To appear in J. Math. Pures Appl. Google Scholar
  80. 80.
    D.A. Plaisted.“Sparse Complex Polynomials and Polynomial Reducibility”. J. of Comput. Syst. Sci. 14 (1977) 210–221.Google Scholar
  81. 81.
    R. Pollack, M.F. Roy. “On the number of cells defined by a set of polynomials”. C.R. Acad. Sci. Paris 316 (1991) 573–577.Google Scholar
  82. 82.
    J. Renegar. “On the Worst-Case Arithmetic Complexity of Approximating Zeros of Polynomials”. J. of Complexity 3 (1987) 90–113Google Scholar
  83. 83.
    H. Riesel. “Prime Numbers and Computer Methods for Factorization”. Birkhäuser Progress in Math. 57 (1985).Google Scholar
  84. 84.
    J. Sabia and P. Solernó. “Bounds for traces in complete intersections and degrees in the Nullstellensatz”. To appear in AAECC Journal (1993).Google Scholar
  85. 85.
    F. Santos. “Geometriá Combinatoria de Curvas Algebraicas y Diagramas de Delaunay en el piano”. Tesis, U. de Cantabria (1995).Google Scholar
  86. 86.
    J.T. Schwartz. “Fast Probabilistic Algorithms for Verification of Polynomial Identities”. J. of the ACM 27, (1980), 701–717.Google Scholar
  87. 87.
    T. Schneider. “Einführung in die transzendenten Zahlen”. Springer-Verlag, Berlin (1957).Google Scholar
  88. 88.
    A. Schonhage, A. F.W. Grotefeld, E. Vetter. “Fast Algorithms (A Multitape Turing machine Implementation)”. B. I. Wissenschaftverlag (1994).Google Scholar
  89. 89.
    M. Shub, S. Smale. “Complexity of Bézout's theorem I: Geometric aspects”. J. Am. Math. Soc., Vol. 6, No. 2 (1993) 459–501Google Scholar
  90. 90.
    M. Shub, S. Smale. “Complexity of Bézout's theorem V: Polynomial time”. Theor. Comp. Sci., 133 (1994) 141–164Google Scholar
  91. 91.
    M. Shub, S.Smale. “On the Intractability of Hilbert's Nullstellensatz and an algebraic version of “NP=P ?”. Preprint of IBM Research Division RC 19624 6/23/94 (1994).Google Scholar
  92. 92.
    S. Smale. “On the Topology of Algorithms, I”. J. of Complexity, 3 (1987) 81–89.Google Scholar
  93. 93.
    S. Smale.“On the Efficiency of Algorithms of Analysis”. Bull of the AMS 13, N. 2 (1985) 87–121.Google Scholar
  94. 94.
    V. Strassen. “Berechnung und Programm I”. Acta Inform., 1 (1972) 320–334.Google Scholar
  95. 95.
    V. Strassen. “Polynomials with rational coefficients which are hard to compute”, SIAM J. Comput. 3 (1974) 128–149.Google Scholar
  96. 96.
    V. Strassen. “Vermeidung von Divisionen”, Crelle J. Reine Angew. Math. 264 (1973) 184–202.Google Scholar
  97. 97.
    V. Strassen. “Algebraic Complexity Theory”. In Handbook of Theoretical Computer Science, Elsevier, ch. 11 (1990) 634–671.Google Scholar
  98. 98.
    B. Sturmfels. “Some Applications of Affine Gale Diagrams to Polytopes with Few Vertices.” SIAM J. Disc. Math., Vol. 1, No. 1 (1988) 121–133Google Scholar
  99. 99.
    B. Sturmfels. “Sparse Elimination Theory”. In Computational Algebraic Geometry and Commutative Algebra”, Proc. of the Cortona Conf. on Comp. Algebraic Geometry and Commutative Algebra, D. Eisenbud and L. Robbiano (eds.). Symposia Matematica, vol. XXXIV, Istituto Nazionale di Alta Matematica, Cambridge University Press (1993) 264–298.Google Scholar
  100. 100.
    B. Sturmfels. “Gröbner Bases of Toric Varieties.” Tohoku Math. J., 43 (1991) 249–261.Google Scholar
  101. 101.
    A. C.C. Yao. “On Paralell Computation for the Knapsack problem”. J. of the ACM, vol. 29, No. 3 (1982) 898–903.Google Scholar
  102. 102.
    R. Zippel. “Interpolating Polynomials from their Values”. J. Symbol. Comput., 9 (1990) 375–403Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Luis M. Pardo
    • 1
  1. 1.Depto. de Matemáticas, Estadística y Computación F. de CienciasUniv. de CantabriaSantanderSpain

Personalised recommendations