Advertisement

When polynomial equation systems can be “solved” fast?

  • M. Giusti
  • J. Heintz
  • J. E. Morais
  • L. M. Pardo
Submitted Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 948)

Abstract

We present a new method for solving symbolically zero-dimensional polynomial equation systems in the affine and toric case. The main feature of our method is the use of an alternative data structure: arithmetic networks and straight-line programs with FOR gates. For sequential time complexity measured by the size of these networks we obtain the following result: it is possible to solve any affine or toric zero-dimensional equation system in non-uniform sequential time which is polynomial in the length of the input description and the “geometric degree” of the equation system. Here, the input is thought to be given by a straight-line program (or alternatively in sparse representation), and the length of the input is measured by number of variables, degree of equations and size of the program (or sparsity of the equations). Geometric degree has to be adequately defined. It is always bounded by the algebraic-combinatoric “Bézout number” of the system which is given by the Hilbert function of a suitable homogeneous ideal. However, in many important cases, the value of the geometric degree is much smaller than the Bézout number since it does not take into account multiplicities or degrees of extraneous components (which are at infinity in the affine case or contained in some coordinate hyperplane in the toric case).

Finally, we announce the result that FOR gates can be avoided by a method which, based on Newton iteration, pulls back the whole question to ordinary arithmetic networks and straight-line programs. In this context, our complexity bounds remain valid. However, this second procedure is not rational anymore because it requires computing with algebraic numbers. This is due to its numeric ingredients (Newton iteration). Nevertheless, at least in the case of polynomial equation systems depending on parameters, the practical advantage of our method with respect to more traditional ones in symbolic and numeric computation is clearly visible.

It should be well understood that our method does not improve the well known worst-case complexity bounds for zero-dimensional equation solving in symbolic and numeric computing.

Keywords

Irreducible Component Primitive Element Great Common Divisor Arithmetic Circuit Greatest Common Divisor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.E. Alonso, E. Becker, M.-F. Roy, T. Wörmann: Zeroes, multiplicities and idempotents for zerodimensional systems, to appear in Proc. MEGA'94, Birkhäuser Progress in Mathematics.Google Scholar
  2. 2.
    C. Berenstein and A. Yger: Effective Bézout identities in Q[X 1,...,X n], Acta Math., 166 (1991) 69–120Google Scholar
  3. 3.
    C. Berenstein and A. Yger: Une Formule de Jacobi et ses conséquences, Ann Sci. E.N.S., 4ieme série, 24 (1991) 363–377Google Scholar
  4. 4.
    S.J. Berkowitz: On computing the determinant in small parallel time using a small number of processors, Inf. Proc. Letters 18 (1984) 147–150.Google Scholar
  5. 5.
    J. Briançon: Sur le degré des relations entre polynômes, Comptes Rendues de l'Acad. des Sci. Paris, t., Série I Math (1982) 553–556.Google Scholar
  6. 6.
    D. W. Brownawell: Bounds for the degree in the Nullstellensatz, Annals of Math. 126 (1987) 577–591.Google Scholar
  7. 7.
    L.Caniglia, A.Galligo and J.Heintz: Some new effectivity bounds in computational geometry, In Proc. AAECC-6, T. Mora (Ed.), Springer LN in Comp. Sci. 357(1989) 131–152.Google Scholar
  8. 8.
    L. Caniglia, A. Galligo and J. Heintz: Borne simplement exponentielle pour les degrés dans le théorème des zéros sur un corps de caractéristique quelconque, C.R. Acad. Sci. Paris, Série I, Math. 307 (1988) 255–258.Google Scholar
  9. 9.
    J. Canny: Some algebraic and geometric problems in PSPACE, Proc. 20-th Ann. ACM Symp. Theory of Computing (1988) 460–467.Google Scholar
  10. 10.
    A.L. Chistov: Polynomial-time computation of the dimension of components of algebraic varieties in zero-characteristic, Preprint Université Paris Val de Marne.Google Scholar
  11. 11.
    A.L. Chistov, D.Yu. Grigor'ev: Subexponential time solving systems of algebraic equations, LOMI Preprints E-9-83, E-10-83, Leningrad (1983).Google Scholar
  12. 12.
    F. Cucker, M. Karpinski, P. Koiran, T. Lickteig, K. Werther: On real Turing machines that toss coins.Google Scholar
  13. 13.
    R.A. De Millo, R.J. Lipton: A probabilistic remark on algebraic program testing, Inf. Proc. Letters, vol. 7, No. 4 (1978) 193–195.Google Scholar
  14. 14.
    A. Dickenstein, N. Fitchas, M. Giusti, C. Sessa: The membership problem of unmixed ideals is solvable in single exponential time, Discrete Applied Mathematics 33 (1991) 73–94.Google Scholar
  15. 15.
    T.W. Dubé: A combinatorial proof of Effective Nullstellensatz, J. Symb. Comp. 15 (1993) 277–296.Google Scholar
  16. 16.
    D. Duval: Évaluation Dynamique et clôture algébrique en Axiom, Journal of Pure and Applied Algebra (1994).Google Scholar
  17. 17.
    N. Fitchas, M. Giusti and F. Smietanski: Sur la complexité du théorème des zéros, to appear in Proceedings of the Second International Conference on Approximation and Optimization, La Habana, 1993, J. Gudatt, ed., Peter Lang Verlag, Frankfurt (1995).Google Scholar
  18. 18.
    W. Fulton: Intersection theory, Ergebnisse der Mathematik, 3 Folge Band 2, Springer Verlag (1984).Google Scholar
  19. 19.
    C.B. García and W. I. Zangwill: Pathways to solutions, fixed points and equilibria, Prentice-Hall, N.J. (1981)Google Scholar
  20. 20.
    J.von zur Gathen: Parallel arithmetic computations: a survey, Proc. 13-th Conf. MFCS. Springer LN Comp. Sci. 233(1986) 93–112.Google Scholar
  21. 21.
    M.Giusti and J.Heintz: La détermination des points isolés et de la dimension d'une variété algébrique peut se faire en temps polynomial, In Computational Algebraic Geometry and Commutative Algebra, Proceedings of the Cortona Conference on Computational Algebraic Geometry and Commutative Algebra, D. Eisenbud and L. Robbiano, eds., Symposia Matematica, vol. XXXIV, Istituto Nazionale di Alta Matematica, Cambridge University Press (1993).Google Scholar
  22. 22.
    M. Giusti, J. Heintz and J. Sabia: On the efficiency of effective Nullstellensätze, Computational Complexity 3 (1993) 56–95.Google Scholar
  23. 23.
    L. González Vega, G. Trujillo: Using symmetric functions to describe the solution of a zero-dimensional ideal, in this volume.Google Scholar
  24. 24.
    K. Haegele, J.L. Montaña: Polynomial random test for the equivalence problem of integers given by arithmetic circuits. Stasiakte Humboldt-Universität. Preprint Series X901-B Google Scholar
  25. 25.
    J. Heintz: Fast quantifier elimination over algebraically closed fields, Theoret. Comp. Sci. 24 (1983) 239–277.Google Scholar
  26. 26.
    J. Heintz: On the computational complexity of polynomials and bilinear mappings, in Proc. 5th International Conference Applied Algebra, Algebraic Algorithms and Error-Correcting Codes AAECC-5, Menorca 1987, L. Huguet and A. Poli, eds., Springer LN Comput. Sci. 356 (1989) 269–300.Google Scholar
  27. 27.
    J. Heintz and J. Morgenstern: On the intrinsic complexity of elimination theory, J. of Complexity 9 (1993) 471–498Google Scholar
  28. 28.
    J. Heintz and C.P. Schnorr: Testing Polynomials which are easy to compute, Proc. 12th Ann. ACM Symp. on Computing (1980) 262–268; also in Logic and Algorithmic. An International Symposium held in Honour of Ernst Specker, Monographie No. 30 de l'Enseignement de Mathématiques, Genève (1982) 237–254.Google Scholar
  29. 29.
    J. Heintz and M. Sieveking: Absolute primality of polynomials is decidable in random polynomial time in the number of the variables, 8th International Colloquium on Automata, Languages and Programming ICALP 81, Springer LN Comput. Sci. 115 (1981) 16–28.Google Scholar
  30. 30.
    O. Ibarra, H. Moran: Probabilistic algorithms for deciding equivalence of straight-line programs, J. ACM 30, Vol. 1, 217–228Google Scholar
  31. 31.
    E. Kaltofen: Greatest common divisors of polynomials given by straight line programs, J. ACM 35, No. 1 (1988) 234–264.Google Scholar
  32. 32.
    E. Kaltofen: Factorization of polynomials given by straight-line programs, Randomness in Computation, Advances in Computing Research 5, S. Micali, ed., JAI Press Inc., Greenwich, CT. (1989) 375–412.Google Scholar
  33. 33.
    J. Kollár: Sharp Effective Nullstllensatz, J. of A.M.S. 1 (1988) 963–975.Google Scholar
  34. 34.
    T.Krick and L.M.Pardo: A Computational Method for Diophantine Approximation, To appear in Proc. MEGA '94, Birkhäuser Progress in Mathematics.Google Scholar
  35. 35.
    T. Krick, L.M. Pardo: Une approche informatique pour l'approximation diophantienne, Comptes Rendues de l'Acad. des Sci. Paris, t. 318, Série I, no. 5, (1994) 407–412.Google Scholar
  36. 36.
    Y.N. Lakshman, D. Lazard: On the complexity of zero-dimensional algebraic systems, Effective methods in algebraic geometry (Castiglioncello, 1990), Prog. Math., vol. 94, Birkhäuser Boston (1991) 217–225.Google Scholar
  37. 37.
    D. Lazard: Résolution des systèmes d'équations algébriques, Theor. Comp. Sci. 15 (1981) 77–110.Google Scholar
  38. 38.
    F.S. Macaulay: The Algebraic Theory of Modular Systems, Cambridge University Press (1916)Google Scholar
  39. 39.
    M. Moeller: Systems of algebraic equations solved by means of endomorphisms, in Proc. 10th International Conference Applied Algebra, Algebraic Algorithms and Error-Correcting Codes AAECC-10, Puerto Rico 1993, G. Cohen, T. Mora and O. Moreno, eds., Springer LN Comput. Sci.Google Scholar
  40. 40.
    J.L. Montaña and L.M. Pardo: Lower Bounds for Arithmetic Networks, AAECC, vol. 4 (1993), 1–24.Google Scholar
  41. 41.
    L.M. Pardo: How lower and upper complexity bounds meet in elimination theory, in this volume.Google Scholar
  42. 42.
    P. Philippon: Dénominateurs dans le théorème des zéros de Hilbert, Acta. Arith. 58 (1991) 1–25.Google Scholar
  43. 43.
    J. Sabia and P. Solernó: Bounds for traces in complete intersections and degrees in the Nullstellensatz, To appear in AAECC Journal (1993).Google Scholar
  44. 44.
    J.T. Schwartz: Fast probabilistic algorithms for verification of polynomial identities, J. ACM 27 (1980) 701–717Google Scholar
  45. 45.
    M. Shub, S. Smale: Complexity of Bézout's theorem V: Polynomial time, Theoretical Comp. Sci. 133 (1994) 141–164.Google Scholar
  46. 46.
    M. Shub, S. Smale: On the intractability of Hilbert's Nullstellensatz and an algebraic version of NP ≠ P?, IBM Research Report, Yorktown Heights (1994)Google Scholar
  47. 47.
    V. Strassen: Algebraic Complexity Theory, Handbook of Theoretical Computer Science, ch. 11 (1990) 634–671.Google Scholar
  48. 48.
    V. Strassen: Vermeidung von Divisionen, Crelle J. Reine Angew. Math. 264 (1973) 184–202.Google Scholar
  49. 49.
    R.E. Zippel: Probabilistic Algorithms for Sparse Polynomials, LNCS, Vol 72 (1979) 216–226Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • M. Giusti
    • 1
  • J. Heintz
    • 2
  • J. E. Morais
    • 2
  • L. M. Pardo
    • 2
  1. 1.Centre de Mathématiques, École PolytechniqueGAGEPalaiseau CedexFrance
  2. 2.Departamento de Matemáticas, Estadística y Computación, Facultad de CienciasUniversidad de CantabriaSantanderSpain

Personalised recommendations